UT Dialogue System
at NTCIR-12 STC

Shoetsu Sato1, Shonosuke Ishiwatari1, Naoki Yoshinaga2, Masashi Toyoda2, Masaru Kitsuregawa2,3

The University of Tokyo, 2IIS, the University of Tokyo, 3NII, Japan
A lot of dialogue systems that can chat have appeared

Siri (Apple)

Cortana (Microsoft)

しゃべってコンシェル (NTT Docomo)

http://www.idownloadblog.com/
http://techcrunch.com/2015/01/05/facebook-wit-ai/
http://ameblo.jp/cos-120/entry-11748747974.html
Recent approaches for chatting dialogue systems

- Data-driven approaches using dialogue data from social media are promising [Ritter+,'10]

U: Utterance
R: Response

U: また残業か・・・
R: 生き残ろうな・・・

U: あの人がどう思う？
R: ああいう人間ほんと嫌い

U: 魚介嫌いでした？
R: そんなこと無いですよ。
Challenge we have tackled in STC task

- The diversity of domains (topics, speaking styles, etc...) makes it difficult to learn.

U: Utterance
R: Response

U: あの人どう思う？
R: ああいう人間ほんと嫌い

U: また残業か・・・
R: 生き残ろうな・・・

U: 魚介嫌いでした？
R: そんなこと無いですよ。
Goal: building a domain-aware dialogue model

Idea: Divide conversation data into domain-consistent subsets to train multiple specific LSTM-based dialogue models

Evaluation: response selection from candidates

Does domain consistence compensate for reduction of training data per a model?
RELATED WORK
Recent promising approach to generate responses

- We employed recent promising Long-Short Term Memory based Recurrent Neural Network (LSTM-RNN) dialogue model [Vinyals+, ‘14]
Generate a response that elicits a specific emotion in the addressee’s mind.

- Joy: 早く良くなるといいですね
- Sadness: あまり近寄らないで下さい
Overview of the related work and target of our method

Point

- General LSTM based methods employed a single model trained from all data
- It is impossible to enumerate all domains in human dialogues

Purpose

- Capture the difference of domains automatically as clusters and train multiple models
Our approach: K-cluster model (1/2)

- **Cluster** the dialogues for each of the *unlabeled domain*, and train multiple models

U: また残業か・・・
R: 生き残ろうな・・・

U: あの人がどう思う？
R: ああいう人間ほんと嫌い

U: 魚介嫌いでした？
R: そんなこと無いですよ。
Our approach: K-cluster model (2/2)

Utterance

就職したくない・・・

Find the nearest domain by human utterance and utterances in training subsets

U: また残業か・・・

U: あの人がどう思う？

U: 魚介嫌いでした？

Response

市民、労働は義務です。
How to automatically handle the domains in each utterance (1/2)

- Apply **k-means clustering** to the utterance vectors and regard clusters as subsets of the training data.

就職したくない
仕事楽しい
仕事超楽しい
会社に住もう

おはよう
おはようございます
朝だ・・・

フォローありがとう
フォロバします
How to automatically handle the domains in each utterance (2/2)

- Represent each utterance as a vector built from word embeddings [Mikolov+, ‘13]
- The density of word embeddings would solve sparseness problems in short texts compared with Bag-of-Words
In response selection task from many candidates, our model’s **high computational cost** causes a problem.

To reduce the number of candidates into **500**, we employed a fast SVM classifier [Yoshinaga+, ‘10].
3 experiments we did

- **Experiment 1: Small response selection task**
 - Evaluate how our method effects in response selection
 - Select response from 20 candidates *without filtering*

- **Experiment 2: Filtering performance**
 - Evaluate to what extent our filter can select proper candidates

- **Experiment 3: NTCIR-12 formal run**
 - Evaluate whole performance of our system (clustered-LSTM, and filter)
Experiment 1: small response selection task

- **Dataset: Twitter**
 Utterance-response (tweet-reply) pairs crawled from Twitter: **100K** for training, **1K** for test
 - Provided for *NTCIR-12 Short Text Conversation Japanese Task* [Shang+, ‘16]

- **Evaluation: Response selection**
 The proportion of test tweets where we succeeded to select the **correct (actually replied) response** from randomly chosen **20 candidates**
We defined it as success if the top-3 responses include the correct response.
Results of K-cluster model

- We compared 1, 10, 20, and 40 cluster models increasing number of clusters until the accuracy was saturated

![Graph showing accuracy vs number of clusters]

Accuracies:
- K=1: Baseline (30.8%)
- K=20: Best Result (35.4%)
- Random Baseline (15.0%)

Our best 20-cluster model outperformed baseline at 4.6%
Examples of clusters we labeled by hand from their frequent utterances

- 13 models out of 20 cluster got improved

Improvement rate vs frequency
Examples of the selected responses

<table>
<thead>
<tr>
<th></th>
<th>Utterance</th>
<th>Proposed</th>
<th>Baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>あ、見の忘れてた。おめでとう!</td>
<td>ありー！見直してくれてありがとう!</td>
<td>今年は1年ありがとうございました</td>
</tr>
<tr>
<td>2</td>
<td>カントリーマァムのドリンクのやつが見つかりません。</td>
<td>ローソン限定じゃなかったっけ？</td>
<td>先輩、おはよーございます♪</td>
</tr>
</tbody>
</table>

Our proposed model tends to stop selecting typical responses
Experiment 2: Filtering performance

Evaluate the filter by recall, whether top-N filtered candidates include the **correct response**

Filtering effectively reduced the number of candidates
Experiment 3 : NTCIR-12 STC Japanese Task

- **Model:** 20 cluster model
 The best one evaluated at experiment 1, 20 cluster model trained from 100k utterance-response pairs

- **Evaluation:**
 - For the 204 provided test utterances, select responses from 500k candidates
 - responses are assigned scores of 0 (inappropriate), 1 (appropriate in some context), 2 (appropriate) by human annotators
Accuracies of selected top-1 responses at NTCIR-12 STC Japanese Task

Ours-R1: Filtering + 20-cluster LSTM model
Ours-R2: Filtering only

Our system selected better responses from filtered candidates
By response selection test we confirmed the effect of cluster-based domain-aware dialogue model

- Domain-consistent training subsets made better results in spite of reduction of training data
- By filtering candidates, our system could effectively select responses
RESULTS FOR EACH CLUSTER
Results in each cluster (20-cluster model)

<table>
<thead>
<tr>
<th>domain (topics, wording, writing style)</th>
<th>#elems</th>
<th>#corr</th>
<th>improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>train</td>
<td>test</td>
<td>ours</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11801</td>
<td>108</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>11524</td>
<td>124</td>
<td>37</td>
</tr>
<tr>
<td>politics, economics, social matters</td>
<td>10294</td>
<td>130</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>9743</td>
<td>94</td>
<td>32</td>
</tr>
<tr>
<td>animation, comics</td>
<td>6747</td>
<td>56</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>6552</td>
<td>66</td>
<td>24</td>
</tr>
<tr>
<td>game</td>
<td>5677</td>
<td>50</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>5627</td>
<td>45</td>
<td>14</td>
</tr>
<tr>
<td>end with ‘?’ r ‘!’</td>
<td>5190</td>
<td>63</td>
<td>17</td>
</tr>
<tr>
<td>moaning (esp., sleepy, weary)</td>
<td>5064</td>
<td>52</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>4908</td>
<td>50</td>
<td>22</td>
</tr>
<tr>
<td>numbers</td>
<td>3803</td>
<td>31</td>
<td>5</td>
</tr>
<tr>
<td>eating</td>
<td>2630</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td>frank acknowledgment (follow, RT)</td>
<td>2252</td>
<td>33</td>
<td>29</td>
</tr>
<tr>
<td>end with ’!!!’</td>
<td>1869</td>
<td>17</td>
<td>8</td>
</tr>
<tr>
<td>polite acknowledgement (follow, RT)</td>
<td>1553</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>greetings</td>
<td>1537</td>
<td>21</td>
<td>7</td>
</tr>
<tr>
<td>end with ‘...’</td>
<td>1326</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>polite morning greetings</td>
<td>1174</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>shouting with word lengthing or repetition</td>
<td>729</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>100000</td>
<td>1000</td>
<td>354</td>
</tr>
</tbody>
</table>