
Analysis of Similarity Measures between Short Text for the
NTCIR-12 Short Text Conversation Task

Kozo Chikai
Graduate school of information science and

technology, Osaka University
chikai.kozo@ist.osaka-u.ac.jp

Yuki Arase
Graduate school of information science and

technology, Osaka University
arase@ist.osaka-u.ac.jp

ABSTRACT
According to rise of social networking services, short text like
micro-blogs has become a valuable resource for practical ap-
plications. When using text data in applications, similarity
estimation between text is an important process. Conven-
tional methods have assumed that an input text is suffi-
ciently long such that we can rely on statistical approaches,
e.g., counting word occurrences. However, micro-blogs are
much shorter; for example, tweets posted to Twitter are re-
stricted to have only 140 character long. This is critical
for the conventional methods since they suffer from lack of
reliable statistics from the text.

In this study, we compare the state-of-the-art methods for
estimating text similarities to investigate their performance
in handling short text, specially, under the scenario of short
text conversation. We implement a conversation system us-
ing a million tweets crawled from Twitter. Our system also
employs supervised learning approach to decide if a tweet
can be a reply to an input, which has been revealed effective
as a result of the NTCIR-12 Short Text Conversation Task.

Team Name
Oni

Subtasks
Short Text Conversation (Japanese)

Keywords
Twitter, short text, similarity, micro-blog

1. INTRODUCTION
Micro-blogging services (e.g., Twitter1, Google+2, Weibo3,

and Tumblr4) have been popular, so that they produce the
enormous amount of text every second. They are a kind of
blogging services but each post should be short. A charac-
teristic of such microblogging services is that users actively
communicate with each other. Therefore, they provide us a
huge amount of conversational text pairs. Short Text Con-
versation (STC) Japanese Task5 in NII Testbeds and Com-

1https://twitter.com/
2https://plus.google.com/about?hl=ja
3http://www.weibo.com/login.php
4https://www.tumblr.com/
5http://ntcir12.noahlab.com.hk/japanese/stc-jpn.
htm

Figure 1: System design

munity for Information access Research (NTCIR6) make use
of this characteristic to develop a conversation system be-
tween a computer and human. Even with latest technologies
in natural language processing, it is still challenging to gen-
erate natural replies to human’s input from scratch. As the
first step of the conversation system, STC task turns the
reply-generation process into an information retrieval task.
STC task gives a pool of tweet conversations; post tweets
and their replies, which can be crawled from Twitter, and
asks participants to search appropriate replies from the pool
for an input post .

We participate in the STC task. Figure 1 shows our sys-
tem design. The principle of our system is that replies to
tweets similar to an input are also effective as the input’s
replies. Our system first searches for tweets that are similar
to the input, and then returns their replies. Thus the key
is how we can precisely estimate similarity between tweets,
which are extremely short.

The standard way to estimate similarity between texts is;
1) represent text by any vector space models, and 2) com-
pute similarity between the vectors. If text is sufficiently
long, a simple approach works well. For example, we may
use bag-of-words vectors. However, we inevitably suffer from
sparsity problem when handling short text. As we can eas-
ily imagine, only several words appear in short text. Due
to this characteristic, vectors representing tweets become
sparse, which results in degenerated similarity estimates.

In this study, we compare conversational vector space
models and similarity measures to handle short text. We
implement the conversation system and evaluate their effec-

6http://research.nii.ac.jp/ntcir/index-ja.html

Proceedings of the 12th NTCIR Conference on Evaluation of Information Access Technologies, June 7-10, 2016 Tokyo Japan

523

tiveness. In addition, our system uses a supervised learning
method to learn if a pair of tweets can be a post-reply pair.
Analysis of the formal run results shows that the super-
vised method is effective especially for typical conversations
in Twitter.

2. RELATED WORK
Previous studies focusing on Twitter have used hetero-

geneous data available in it, such as follower-followee rela-
tionships, location information, timestamps, and hashtags.
Yan et al. [1] propose a graph ranking algorithm using
two kind of graphs; an undirected graph representing sim-
ilarities between tweets and a directed graph representing
user’s follower-followee relationships. Using the ranking al-
gorithm, they developed a recommendation system that sug-
gests tweets to take a look. Zhao et al. [2] propose the
Twitter-LDA model in which LDA [3] has been adapted to
handle tweets. They show that restricting a tweet to have
only one topic leads to higher accuracy for identifying topics
in tweets.

These studies use the heterogeneous data in Twitter. Such
data are definitely effective to improve performance of a sys-
tem designated to a specific application. However, at the
same time, systems depend on these heterogeneous data are
hard to extend to use different kinds of data source other
than Twitter. In order to make our method as flexible to
different kinds of applications as possible, we use only text
(i.e., tweets) and post-reply relationships in this study.

The standard approach to estimating similarity between
text represents texts as a vector and computes similarity
between the vectors. Typical vector space models are bag-
of-words and its variations using TF-IDF for weighting, and
topic models (e.g., pLSI [4], LDA [3]). However, Mihalcea
et al. [5] and O’Shea et al. [6] show that topic models fail to
extract correct topics if input text is too short due to lack
of word co-occurrence statistics. Guo et al. [7, 8] proposed
Weight Text Matrix Factorization (WTMF) model that aims
to complement the sparseness in vectors representing tweets
by assuming that unobserved words in a tweet should not
be relevant to the tweet. On the other hand, Gabrilovich et
al. [9] complements the sparseness using Wikipedia7 corpus.
As an orthogonal approach, we can use word or document
embeddings generated, using deep neural network with an
enormous text corpus [10, 11, 12, 13, 14].

3. MAPPING TWEETS TO VECTORS
In this section, we briefly summarize conventional vector

space models to convert a tweet to a vector. We compare
these methods in our system.

3.1 WTMF model
WTMFmodel aims to vectorize sparse text like tweets. Its

principle is that let unobserved words in a tweet be irrelevant
to the tweet. As Figure 2 shows, WTMF approximates a
tweet-word matrix X ∈ RM×N by the product of a matrix
P ∈ RK×M and a matrix Q ∈ RK×N . Accordingly, each
tweet sj is represented by a K–dimensional latent vector
Q·,j . In a similar fashion, vector P·,i refers to a word wi.

The matrices P and Q are derived by minimizing the ob-
jective function of Equation (1).

7https://www.wikipedia.org/

Figure 2: Weighted Textual Matrix Factorization [7]

Figure 3: CBOW Model [11]

∑
i,j

Wi,j(P·,i ·Q·,j −Xi,j) + λ||P ||22 + λ||Q||22 , (1)

Wi,j =

{
1 (if Xi,j ̸= 0)

wm (if Xi,j = 0) .
(2)

Last two terms in Equation (1) are regularizers to avoid
over-training. Wi,j is defined by Equation (2), standing for
the weight of unobserved words. Since most of cells in X are
unobserved words (0 weight), the impact of observed words
is significantly diminished. Therefore a small weight wm is
assigned for each unobserved words in X in order to preserve
the influence of observed words.

3.2 Word Embedding
Instead of directly generating vectors of tweets, we may

use word embedding to represent a tweet. Recent studies
[10, 11, 12, 13, 14, 15] have used deep neural network for
word embedding that generates low-dimensional vectors rep-
resenting words.

We use word2vec [10, 11, 12, 13] with CBOW model. As
in Figure 3, CBOW is modeled to predict a word from its
surrounding context.

4. IDENTIFY REPLY TO A TWEET
In this section, we describe methods to identify a tweet

that can be a reply to an input.

4.1 Cosine similarity
Cosine Similarity is one of the standard methods to cal-

culate the similarity between vectors:

cos(x,y) =
x · y
|x||y| , (3)

Proceedings of the 12th NTCIR Conference on Evaluation of Information Access Technologies, June 7-10, 2016 Tokyo Japan

524

where x, y are vectors. The closer to 1 the output figure is,
the more similar x and y are.

We rank tweets using the cosine similarity, and then ex-
tract replies to the similar tweets as replies to the input.

4.2 Classification-based method
Since our corpus consists of tweets and their replies, we

can use a supervised learning approach to directly learn if a
pair of tweet can be a post-reply pair.

Specifically, we use Random Forest [16] for its superior
accuracy and lighter computational cost. We regard post-
reply pairs in the corpus as positive examples. Since there
is no explicit negative examples, we synthesize negative ex-
amples by pairing a tweet with a randomly picked one. For
these examples, we concatenate vectors of each tweet, and
train a Random Forest. The trained model describe if an
input tweet pair is positive (i.e., can be post-reply pair) of
negative.

5. DESIGN OF CONVERSATION SYSTEM
STC task provides participants a list of 500K pairs of

tweet IDs posted in 2014, i.e., 500K tweets and their replies,
in total one million tweet IDs. We crawled the tweet text
using Twitter API8. Due to the lag between the time when
the task organizers prepared the list and the actual crawl-
ing, some tweets had become unavailable. We have collected
428, 124 pairs (post and comment tweets) and 64, 395 tweets
(residue tweet, which either post or comment tweet is un-
available), in total 920, 643 tweets.

Figure 4 shows the overview of our conversation system.
The system takes an input tweet that needs replies. It
searches and ranks tweets as described below. Then, using
the top–50 tweets, the system generates the final ranking of
potential replies. Specifically, starting from the top-1 tweet,
its pair is inserted into the list, and then the tweet itself is
inserted to the list as the second rank. This means if the
tweet is a post tweet in the corpus, we rank its reply higher,
and similarly, if the tweet is a reply tweet, corresponding
post tweet is ranked higher. This is because we observe that
direction of post–reply can be reversed in some context as
following example shows.

post : 今日の北海道めっちゃ涼しい
(It is pretty cool in Hokkaido today.)

reply : 夏の北海道の気候って最高だよな
(Summer is the best season in Hokkaido.)

We include the tweet itself since they are useful as a reply
agreeing with the input tweet. When the similar tweet is
a residue tweet, we include only the residue tweet into the
reply list.

We implement the following five methods for ranking tweets
in the system and evaluate their performance.

① TF-IDF
Tweets are represented by a bag-of-words matrix
with TF-IDF weighting. Similarity between tweets
is calculated using cosine similarity (Equation(3)).
Finally, top-50 similar tweets are used to generate
the reply list.

8https://dev.twitter.com/

②WTMF
Vectors representing tweets are generated byWTMF
model described in Section 3.1 . Similarity between
tweets is calculated by cosine similarity (Equation(3)).

③Word2vec → TF-IDF
We first find tweets relevant to an input tweet us-
ing word embedding. For this purpose, word vec-
tors are generated using word2vec with Wikipedia
dump data9. Then 20 most similar words for each
noun and verb in the input tweet are extracted
using the word vectors. Tweets containing these
words are searched and set as candidates. Finally,
these candidate tweets are ranked based on their
similarities to the input tweet in the same manner
with ① TF-IDF.

④ Random Forest → TF-IDF
Tweets are represented by vectors in the same man-
ner with①TF-IDF. Using these vector, a classifier
is trained as described in Section 4.2. Specifically,
we sample 300K post-reply pairs from the corpus
as positive examples and another 300K randomly
paired tweets as negative examples. Random For-
est is trained as a binary classifier; the number of
trees are set to 100. For speeding up the train-
ing process, the dimension of a vector representing
tweet is reduced to be 100 using singular value de-
composition [17].

The vector of the input tweet is concatenated with
that of tweet in the corpus, and then fed to the
trained classifier. As a result, we collect all tweets
decided as positive, i.e., regarded as post–reply
pairs. Finally, these tweets are ranked in the same
manner with ① TF-IDF method.

⑤ Random Forest + TF-IDF
This method is a variation of ④. It ranks the posi-
tive tweets by summing the likelihood of being pos-
itive, which is output of the Random Forest clas-
sifier, and cosine similarity computed in the same
manner with ①.

　
We note that other conventional approaches for generat-

ing vectors of tweets, i.e., LDA [3], HDP [18], and doc2vec
[15], as well as similarity measures proposed in [19] have
been also evaluated. However, due to their poor perfor-
mance compared to the methods described in this section,
we omit reporting their results.

6. PRELIMINARY EXPERIMENT
In this section, we describe a preliminary experiment to

understand characteristics of our system.

6.1 Data set
STC task provides participants a development that con-

sists of 225 tweets. Each tweet has 10 tweets that are as-
signed scores by humans as 0, 1, 2, or NA:

0 : The tweet does not make sense as reply.

9http://dumps.wikimedia.org/jawiki/latest/
jawiki-latest-article.xml

Proceedings of the 12th NTCIR Conference on Evaluation of Information Access Technologies, June 7-10, 2016 Tokyo Japan

525

Figure 4: Ranking Method

1 : The tweet is acceptable as a reply in some con-
text.

2 : The tweet is appropriate as reply.

NA : The input tweet does not make sense.

Annotation has been performed via crowd sourcing, where
at most 10 annotators assigned a score to each tweet. We
conduct a preliminary experiment using the development
set to investigate effectiveness of each method. We average
scores of tweets and regard ones that have more than or
equal to 0.7 as correct replies, excluding tweets and their
pairs that have assigned NA. Consequently, we have 179
input posts (tweets) with potential replies.

6.2 Evaluation Criteria
The STC task requires to generate a ranked list of po-

tential replies to an input tweet, and thus we employ five
evaluation criteria; P@k, TOP@k, MRR, MAP, nDCG@k.

P@k (Precision at k) evaluates the precision of top–k
replies, while TOP@k is a simplified measure of P@k, which
evaluates if a correct reply is contained in the top–k ranking.

MRR (Mean Reciprocal Rank) evaluates if correct tweets
is ranked higher. Specifically, it only observes and evaluates
top most correct tweet in a ranking. MRR checks the ranked
tweets from top, then calculates reciprocal rank:

MRR =
1

N

N∑
i

1

r
, (4)

N is the number of rankings, and r is the rank of the correct
tweet.

MAP (Mean Average Precision) computes the mean of the
average precision scores:

APi =
1

Ri

∑
j

I(j)
count(j)

j
, (5)

MAP =
1

N

N∑
i

APi , (6)

where Ri is the number of correct tweets contained in top-i
ranking, I(j) is a binary indicator whether ranked tweet is
correct or not, and count(j) is the number of correct tweets
contained in the top-j rank.

nDCG (Normalized Discounted Cumulative Gain) can eval-
uate ranking quality when the ground-truth provides scores
representing appropriateness of each item. DCG appreciates
that higher scored tweets are ranked higher. DCG accumu-
lated at a particular rank k is defined as:

DCGk = rel1 +

k∑
i=2

reli
log2 i

, (7)

where reli represents the score that the i–th ranked item
has. Since the number of correct replies may be diverse for
each input tweet, nDCG normalizes DCG against an ideal
DCG. It can be computed by sorting the second items in the
gold-standard by descending order and computes its DCG.
Finally, nDCG is defined by Equation(8).

nDCGk =
DCGk

IDCGk
. (8)

All the evaluation criteria range from 0 to 1, where higher
the figure is, better the ranking quality is.

6.3 Results
Figure 5 and 6 show performance of each method. Over-

all, ① TF-IDF and ③Word2vec → TF-IDF outperformed
others in all evaluation metrics. As we look into details, ①
outperforms ③ for TOP@k and MAP, while ③ outperforms
① for MRR and P@k. This means that① has a larger num-
ber of correct replies in its ranking, but the ranking quality
itself is degraded than③. This is the positive effect of tweet
filtering perfomed using word vectors in ③.
②WTMF performs worse than①TF-IDF, where only the

difference between① and② is the vector space model. This
result suggests that the principle of WTMF, i.e., unobserved
words should not be relevant to a tweet, is too strict when
handling extremely short text like tweets.

The performance of ④ Random Forest → TF-IDF and
⑤ Random Forest + TF-IDF show similar trend with ③

Proceedings of the 12th NTCIR Conference on Evaluation of Information Access Technologies, June 7-10, 2016 Tokyo Japan

526

Figure 5: Results of P@k, MRR, MAP, and nDCG@20

Figure 6: Result of TOP@k

word2vec → TF-IDF. When we observe replies output by④
and ⑤, we find that these methods work better on shorter
input tweets. For example, given an input tweet of “Thank
you for following me,” these methods find correct reply of
“Welcome, thank you too for following.” This is because such
a short conversation is typical in Twitter, thus there should
be a larger number of examples included in the training set.
On the other hand, post–reply tweets with long text are
rare in the corpus, thus they are hard to generalize while
training.

7. FORMAL RUN
In this section, we discuss results of the formal run in STC

Task.

7.1 Our submission
We submitted ranked lists of tweets that were generated

by methods described in Section 5, which are reported in the
task overview [20]. Table 1 shows correspondences between
submission names and method names in Section 5.

STC task evaluated submissions by three criteria: nDCG@1,
nERR@5, and Accuracy. Details of these evaluation mea-
sures are described in the overview.

Table 1: The Methods we submitted
Name of method Technique

Oni-J-R1 ④ Random Forest → TF-IDF
Oni-J-R2 ⑤ Random Forest + TF-IDF
Oni-J-R3 ① TF-IDF
Oni-J-R4 ③Word2vec → TF-IDF
Oni-J-R5 ②WTMF model

7.2 Results
Figure 7 summarizes the evaluation results. There are

3 to 5% gaps between the best-performed method and the
worst one. Overall, Oni-J-R1 (④ Random Forest → TF-
IDF) performed best in all criteria. This results shows that
the supervised learning based approach is effective to distin-
guish post-reply pairs and random pairs.

The task overview reports that the five methods we de-
veloped achieved higher ranks in nERR@5, AccL2@5, and
AccL1,L2@5 compared to nDCG@1, AccL2@1, andAccL1,L2@1.
This reveals that our methods failed to rank a good reply at
the first position, but have relatively good ranking overall.
Figure 8 shows the mean of scores (i.e., labels 0, 1, and 2)
given each reply at different ranks. It shows that the second

Proceedings of the 12th NTCIR Conference on Evaluation of Information Access Technologies, June 7-10, 2016 Tokyo Japan

527

Figure 7: Result of nDCG@1, nERR@5, and Accuracy

Figure 8: Mean of labels for each rank

and forth ranked replies have much higher scores than the
first and third ranked replies in all methods. We can see
that our assumption that replies to the similar tweet with
an input should be also effective as replies to the input did
not hold. The reason is twofold. First, that assumption re-
quires quite precise similarity computation to hold, and the
methods we used are too far to reach that bar. If similarity
computation is not satisfactory, replies to not-that-similar
tweets are hopeless to be acceptable replies. Second, judg-
ing if a reply is acceptable or not is tough even for human.
It is easy to imagine that tweets talking about the similar
topic tend to be assigned label 1 or 2, since they are at least
relevant.

As we discussed in Section 6.3, methods using Random
Forest (Oni-J-R1 and Oni-J-R2) perform better on shorter
tweets. Table 2 shows means of scores for different character
lengths of inputs. We compare Oni-J-R1(④ Random forest
→ TF-IDF) to Oni-J-R3 (① TF-IDF). These two methods
are different whether using Random forest as filtering at first
or not. Therefore, if Oni-J-R1 has higher score (colored red
in Table 2), it is effect of using Random forest to decide if
a pair of tweet can be a post-reply pair. As you can see,
Oni-J-R1 achieves higher scores when an input post has less

than 40 characters. This trend is more remarkable when
the input post has less than 20 characters. This is because
short text like less than 20 characters is typical conversation
in Twitter, and thus there are the larger number of training
examples. For example, Table 3 shows the actual input post
and replies produced by Oni-J-R1. In addition, in the case
that input post is a short text, the number of the topic
included in a tweet is few, thus it has lesser ambiguity to
handle while training.

When we observe the replies generated by Oni-J-R4 (④
Word2vec → TF-IDF), they have different characteristics
from others. Specifically, compared to replies generated by
R3 (① TF-IDF), Oni-J-R4 produces replies that have rele-
vant topics with the input but with wider scopes. For ex-
ample, Table 4 shows the differences of replies between R3
and R4. This table shows that R3’s replies pinpoint to the
topic of “LINE 10.” On the other hand, R4’s replies broadly
covers topics in IT:“PC”,“smartphone”, and“online games.”
R4 did not outperform other methods, however this feature
is interesting and has potential to produce replies to extend
the conversation topics like humans do.

10http://line.me/ja/

Proceedings of the 12th NTCIR Conference on Evaluation of Information Access Technologies, June 7-10, 2016 Tokyo Japan

528

Table 2: Effect of R1 and R3 due to the number of characters
input 0 ≤ # of characters ≤ 20 20 < # of characters ≤ 40 40 < # of characters ≤ 60 60 < # of characters
system R1 R3 R1 R3 R1 R3 R1 R3

rank1 0.810 0.587 0.424 0.408 0.376 0.279 0.350 0.350
rank2 0.860 0.793 0.722 0.709 0.703 0.685 0.691 0.644
rank3 0.503 0.550 0.401 0.328 0.371 0.365 0.375 0.341
rank4 0.583 0.670 0.731 0.749 0.694 0.732 0.775 0.806
rank5 0.227 0.600 0.359 0.417 0.471 0.356 0.397 0.294

Table 3: Example of replies generated by Oni-J-R1

Input post
フォローありがとうございます！

Thank you for following!

rank1
こちらこそ、懐かしい画像をありがとうございました♪ よろしくお願いします！

Thank you too for sharing the nostalgic photos! Keep in touch.

rank2
RTありがとです♪ フォローさせていただきました！

Thank you for retweeting. I had followed you!

rank3
お休みなさい♪ 今年も宜しくお願いします！
Good night. Wish we’ll have fun together!

rank4
寝ます。おやすみなさい。 さっそく今日から仕事だ！
Going to bed. Good night. Gotta work from today!

rank5
んぅ いくぅ
hmmm...

Table 4: Example of output from Oni-J-R3 and Oni-J-R4
Input post LINE使えんので用のある人はこっちでお願いします！

Cannot use LINE now. Please contact me via Twitter!
Method R3 R4

rank1 新しいアカウント作ったから教えてー！ PCで扱うようなでかい解像度で色々したりするんでなければいよ
いよ十分な感じなんです？

Let me know your account! I’ve just created one. It should be satisfactory unless you process high-resolution im-
ages that require PC-like performance.

rank2 LINE使えるようになった？ んー、パソコンで使えた機能の大半はもう使えてるよね。 単純に使
える、だけだけど。　 次の 8コアのスマートフォン向けの cpuが
出るからそれで単純に使える機能から卒業して、もうスマートフォ
ンで十分になる機能は出るだろう

Has LINE recovered? Most functions in PCs are already covered by smart phones,
although they are just functioning... They should be actually
usable with the next 8-core CPU for smart phones.

rank3 パソコンの LINEツンデレすぎるよ！ もう！ 早く携帯よとどけ！ 単発でやる環境に長くいたせいで、最近キャンペ参加できるように
なったのですがなかなか上手い感じにキャンペ用キャラが組めない
んですよね……

LINE app for PC is hard to use... Get me a cell phone! I cannot figure out how to organize my party for online campaign
as I’ve been playing alone...

Proceedings of the 12th NTCIR Conference on Evaluation of Information Access Technologies, June 7-10, 2016 Tokyo Japan

529

In either the preliminary experiment or formal run, Oni-
J-R5(②WTMF model) did not outperform TF-IDF based
models. As we discussed in Section 6.3, assumption inWTMF
model may be too strict for extremely short text like tweets.
Also failures in morphological analysis may have been af-
fected the quality of its vector space model. Since tweets are
informal and colloquial, the morphological analyzer trained
by conventional documents produce lost of errors.

As a result of observation, we also found that when the
input post was long (more than 40 characters), it was dif-
ficult to find appropriate replies. Let us take the following
input post as an example.

Input post : んで今から金沢！ 今更テラハ見てきまーす笑
[個人名]カーブと駐車できんくせに 直線くそ速い
笑 生きて帰ってこれますように…笑
(We are going to Kanazawa! And see the movie
“terrace house”. [personal name] can’t go round
a curve nor park, but he drives toooo fast on
a straight road. Wish we could come home
safely...)

We expect a reply should answer the phrase of “生きて帰って
これますように (Wish we could come home safely...).” How-
ever, our methods output replies talking about Kanazawa
city by being too much influenced by the word “金沢.” In
order to solve this problem, we should identify the topic that
input post mostly requires answers. This is our future work.

Finally, we found that the performance of the examined
methods are diverse between the preliminary experiment
and formal run. One reason is that annotated replies in the
development set were extracted from the pool using Lucene
11. Its search function is based on TF-IDF, and thus, ①
TF-IDF should have been compatible in the preliminary ex-
periment where we used the development set.

8. CONCLUSION
We take part in the NTCIR-12 STC Japanese Task and

compare the state-of-the-art methods for a conversation sys-
tem.

Results revel their characteristics to handle short text in
the conversation system. Supervised learning is effective to
decide if a reply is acceptable for an input when the input
is short and contains only a few topics. As future work, we
plan to work on identifying the topic in longer tweets that
require answers in order to produce appropriate replies.

9. REFERENCES
[1] R. Yan, M. Lapata, and X. Li, “Tweet

recommendation with graph co-ranking,” In
Proceedings of ACL, pp. 516–525, July 2012.

[2] W. X. Zhao, J. Jiang, J. Weng, J. He, E. Lim, H. Yan,
and X. Li, “Comparing Twitter and traditional media
using topic models,” In Proceedings of ECIR, pp.
338–349, April 2011.

[3] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent
Dirichlet Allocation,” Journal of Machine Learning
Research, vol. 3, pp. 993–1022, May 2003.

[4] T. Hofmann, “Probabilistic latent semantic indexing,”
In Proceedings of SGIR, pp. 50–57, August 1999.

11https://lucene.apache.org/core/

[5] R. Mihalcea, C. Corley, and C. Strapparava,
“Corpus-based and knowledge-based measures of text
semantic similarity,” In Proceedings of AAAI, vol. 1,
pp. 775–780, July 2006.

[6] J. O’Shea, Z. Bandar, K. Crockett, and D. McLean,
“A comparative study of two short text semantic
similarity measures,” In Proceedings of KES, pp.
172–181, Springer, March 2008.

[7] W. Guo, and M. Diab, “Modeling sentences in the
latent space,” In Proceedings of ACL, pp. 864–872,
July 2012.

[8] W. Guo, H. Li, H. Ji, and M. Diab, “Linking Tweets
to news: A framework to enrich short text data in
social media,” In Proceedings of ACL, pp. 239–249,
August 2013.

[9] E. Gabrilovich, and S. Markovitch, “Computing
semantic relatedness using Wikipedia-based explicit
semantic analysis,” In Proceedings of IJCAI, pp.
1606–1611, January 2007.

[10] T. Mikolov, W. Yih, and G. Zweig, “Linguistic
regularities in continuous space word representations.,”
In Proceedings of HLT-NAACL, pp. 746–751, June
2013.

[11] T. Mikolov, K. Chen, G. Corrado, and J. Dean,
“Efficient estimation of word representations in vector
space,” arXiv preprint, arXiv:1301.3781, 2013.

[12] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and
J. Dean, “Distributed representations of words and
phrases and their compositionality,” in Advances in
Neural Information Processing Systems 26, eds.
C. Burges, L. Bottou, M. Welling, Z. Ghahramani,
and K. Weinberger, pp. 3111–3119, Curran Associates,
Inc., October 2013.

[13] T. Mikolov, Q. V. Le, and I. Sutskever, “Exploiting
similarities among languages for machine translation,”
arXiv preprint arXiv:1309.4168, 2013.

[14] J. Pennington, R. Socher, and C. D. Manning, “Glove:
Global vectors for word representation,” In
Proceedings of EMNLP, vol. 32, pp. 1532–1543,
October 2014.

[15] T. Mikolov, and Q. V. Le, “Distributed representations
of sentences and documents,” In Proceedings of ICML,
vol. 32, pp. 1188–1196, June 2014.

[16] L. Breiman, “Random forests,” Machine learning, vol.
45, no. 1, pp. 5–32, October 2001.

[17] M. Udell, C. Horn, R. Zadeh, and S. Boyd,
“Generalized low rank models,” arXiv preprint
arXiv:1410.0342, 2014.

[18] Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei,
“Hierarchical dirichlet processes,” Journal of the
American Statistical Association, vol. 101, pp.
1566–1581, November 2006.

[19] Y. Song, and D. Roth, “Unsupervised sparse vector
densification for short text similarity,” In Proceedings
of HLT-NAACL, pp. 1275–1280, May 2015.

[20] L. Shang, T. Sakai, Z. Lu, H. Li, R. Higashinaka, and
Y. Miyao, “Overview of the NTCIR-12 short text
conversation task,” In Proceedings of the NTCIR
Workshop Meeting on Evaluation of Information
Access Technologies (NTCIR-12) (to be published).,
2016.

Proceedings of the 12th NTCIR Conference on Evaluation of Information Access Technologies, June 7-10, 2016 Tokyo Japan

530

