A Probabilistic Framework for Time-Sensitive Search

Dhruv Gupta & Klaus Berberich

{dhgupta, kberberi}@mpi-inf.mpg.de

June 9, 2016

- **2** Building Blocks for Time-Sensitive Search
- **3** Temporal Intent Disambiguation
- **4** Temporally Diversified Retrieval

2 Building Blocks for Time-Sensitive Search

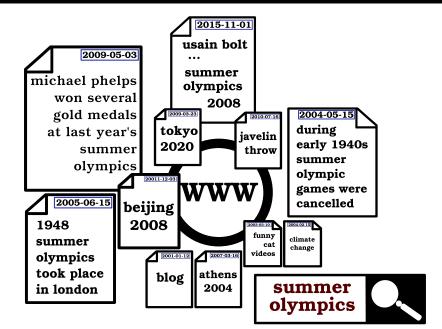
3 Temporal Intent Disambiguation

4 Temporally Diversified Retrieval

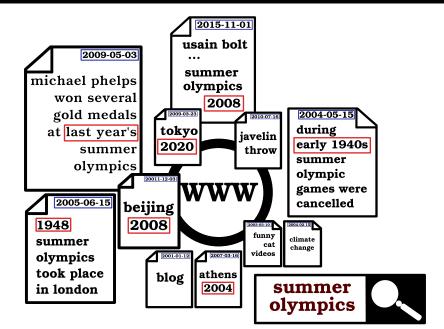
5 Summary

Explicit Temporal Queries

• 13.8% of Web queries ¹


Implicit Temporal Queries

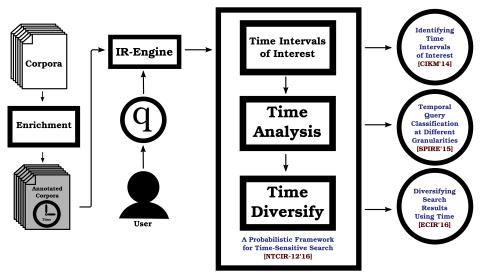
• 17.1% of Web queries ¹



Kanahabua et al. : Temporal Information Retrieval. Foundations and Trends in Information Retrieval, 9(2):91-208, 2015.

Traditional Search

Time-Sensitive Search

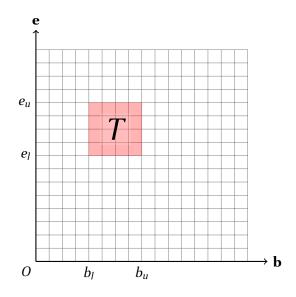

2 Building Blocks for Time-Sensitive Search

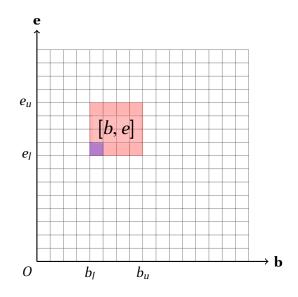
3 Temporal Intent Disambiguation

4 Temporally Diversified Retrieval

Building Blocks for Time-Sensitive Search

Time Model Incorporating Uncertainty


$$T = \langle b_l, b_u, \mathbf{e}_l, \mathbf{e}_u \rangle$$

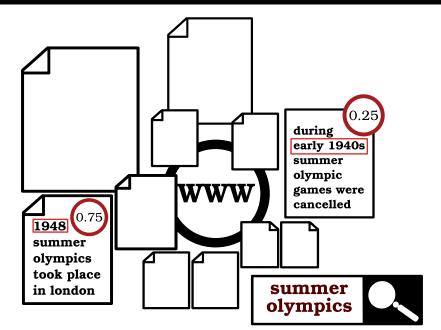

Example

- ► Expression : "1940s"
- ► Resulting Temporal Expression (*T*) :

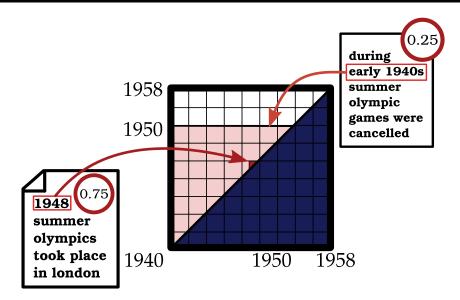
 $\langle 01 - 01 - 1940, 31 - 12 - 1949, 01 - 01 - 1940, 31 - 12 - 1949 \rangle$

² Berberich et al. : A Language Modelling Approach for Temporal Information Needs. ECIR 2010.

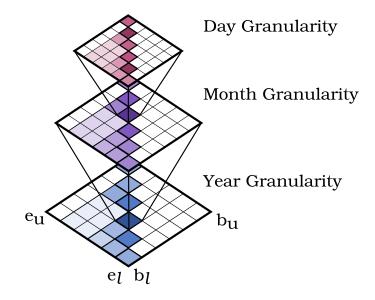
Hypothesis


A time interval [b, e] is interesting for a keyword query q, if it is frequently referred to by highly relevant documents.

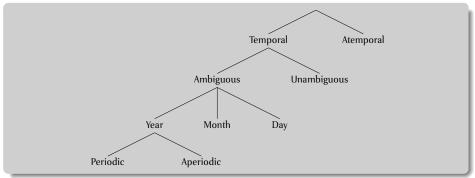
Generative Model


$$P([b, e]|q_{text}) = \sum_{d \in top(q,k)} P([b, e]|d_{time}) P(d|q_{text})$$

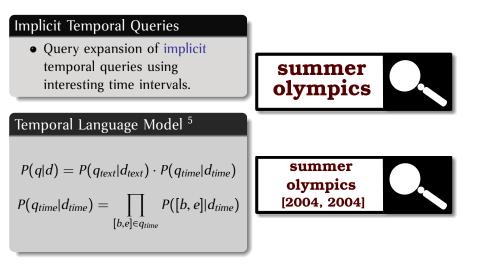
³ Gupta & Berberich : Identifying Time Intervals of Interest to Queries. CIKM 2014.


Counting Frequent Temporal Expressions

Counting Frequent Temporal Expressions

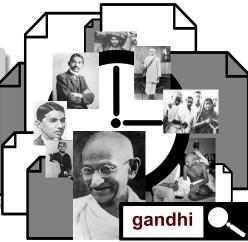

Counting Frequent Temporal Expressions Recursively

Identify Temporal Intents ⁴


Contributions

- Identify temporal class in a taxonomy taking into account
 - Multiple granularities (day, month, year)
 - (A)periodicity of events
- Determine time intervals as intent for temporally ambiguous queries

⁴ Gupta & Berberich : Temporal Query Classification at Different Granularities. SPIRE 2015.


Temporal Language Model ⁵

⁵ Berberich et al. : A Language Modelling Approach for Temporal Information Needs. ECIR 2010.

Diversifying Search Results Using Temporal Expressions⁶

- Retrospective overview of an entity or event
- Applications in digital humanities
- Search longitudinal document collections without knowledge of time intervals of interest

⁶ Gupta & Berberich : Diversifying Searach Results Using Time. ECIR 2016.

¹ <u>Photos from</u>: https://de.wikipedia.org/wiki/Mohandas_Karamchand_Gandhi.

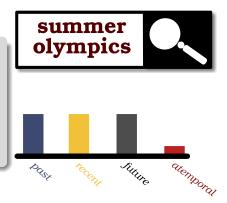
Diversify Search Results Using Temporal Expressions

- ► Adapt IA-Select ⁸ for diversification along time
- Query result set *S* that maximizes

$$\sum_{[b,e]\in q_{time}} P([b,e] \mid q_{text}) \left(1 - \prod_{d\in S} \left(1 - P(q_{text} \mid d_{text}) P([b,e] \mid d_{time}) \right) \right)$$

⁸ Agrawal et al. : Diversifying Search Results. WSDM 2009.

2 Building Blocks for Time-Sensitive Search


3 Temporal Intent Disambiguation

4 Temporally Diversified Retrieval

Problem Temporal Intent Disambiguation

- Given, a keyword query *q*_{text} and the classes *C*:
 - past
 - recent
 - future
 - atemporal
- Estimate P(C|q)

Approach — Analyze Time Intervals of Interest to Query

Approach — Analyze Time Intervals of Interest to Query

$$P(C = past|q) = \frac{1}{|\hat{q}_{time}|} \sum_{[b,e]\in\hat{q}_{time}} \mathbb{1}(t_{issue} > e)$$

$$P(C = recent|q) = \frac{1}{|\hat{q}_{time}|} \sum_{[b,e]\in\hat{q}_{time}} \mathbb{1}(b \le t_{issue} \le e)$$

$$P(C = future|q) = \frac{1}{|\hat{q}_{time}|} \sum_{[b,e]\in\hat{q}_{time}} \mathbb{1}(t_{issue} < b)$$

$$P(C = atemporal|q) = \sqrt{|\hat{q}_{time}|} \max_{[b,e]\in\hat{q}_{time}} |P([b,e]|q) - P([b,e]|D_{time})|$$

System	Loss	Similarity	#Queries
Mpii-Tid-Formal	0.35	0.35	300
Mpii-Tid-Dry	0.34	0.39	20
Mpii-Tid-Train Baseline	0.30 0.26	0.48 0.66	73

Table: Results for our proposed system at different stages of the temporal intent disambiguation subtask.

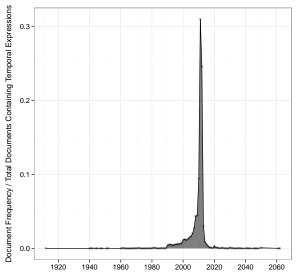
- Good results for following types of queries, i.e., low *loss* and high *similarity*:
 - the advantages of hosting the olympic games
 - freedom of information act
 - when did ww2 start
 - how did bin laden die
 - when was television invented
 - history of slavery
 - occupy wall street movement
- Insight: Queries that are history-oriented, i.e., have poignant past achieve good results

Insights — Bad

• Query examples with high *loss* and low *similarity*:

- naming university buildings with commercial brands
- body posture alteration
- dressing code in job interview
- badminton games
- advanced english
- time warner austin


• For these queries the interesting time intervals arose in [2011, 2013]


Insights — Bad

• Query examples with high *loss* and low *similarity*:

- naming university buildings with commercial brands
- body posture alteration
- dressing code in job interview
- badminton games
- advanced english
- time warner austin

• For these queries the interesting time intervals arose in [2011, 2013]

2 Building Blocks for Time-Sensitive Search

3 Temporal Intent Disambiguation

4 Temporally Diversified Retrieval

Problem Temporal Diversified Retrieval

Given, keyword query q_{text} and document collection D, estimate P(d|q, C). summer olympics FUTUTE Past atemporal **IR-Engine** Diversified Across Interesting Time Intervals

Approach

- Use the temporal language model to re-rank documents
- For C = recent
 - Expand query with query issue time
- For C = past
 - Expand query with time intervals that lie before query issue time
- For C = future
 - Expand query with time intervals that lie after query issue time
- For C = atemporal
 - Use the pseudo-relevant set of documents.
- For diversified set of documents
 - Use temporal diversification to find a set of documents such that the user sees at least one document from each of the interesting time intervals

Category	Dry-run nDCG@20	Formal-run nDCG@20
Atemporal	0.17	0.34
Past	0.19	0.39
Recent	0.05	0.34
Future	0.02	0.34
All	0.11	0.35

Table: Results for our proposed system for retrieving time-sensitive documents at different stages of the temporally diversified retrieval subtask.

Stage	nDCG@20	D#-nDCG@20
Dry-run	0.18	0.41
Formal-run	0.33	0.57

Table: Results for our proposed system for diversifying time-sensitive documents at different stages of the temporally diversified retrieval subtask.

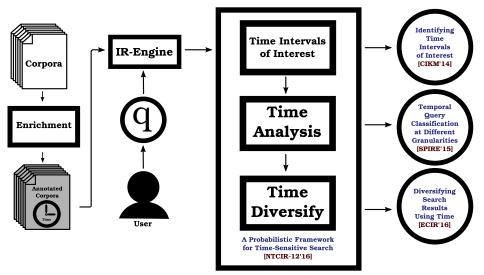
• Overall comparing to organizers' system our method did not fare as well

Insights

- Overall comparing to organizers' system our method did not fare as well
- Why?
 - The role of the retrieval method for producing an initial set of pseudo-relevant documents
 - The role that document content temporal expressions play in our approach we used annotations provided with corpus

Insights

- Overall comparing to organizers' system our method did not fare as well
- Why?
 - The role of the retrieval method for producing an initial set of pseudo-relevant documents
 - The role that document content temporal expressions play in our approach we used annotations provided with corpus
- Improvements
 - Try different initial retrieval methods
 - Use an external temporal tagger (e.g., SuTime, HeidelTime) as opposed to temporal expressions provided with document collection


2 Building Blocks for Time-Sensitive Search

3 Temporal Intent Disambiguation

4 Temporally Diversified Retrieval

Summary — Building Blocks for Time-Sensitive Search

