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ABSTRACT
This paper details our participation in the Temporal Intent
Disambiguation (TID) English subtask of the NTCIR-12
Temporalia Task. Our work focuses on the development
of a series of temporal features in web search queries and
the construction of a deep neural network for disambiguat-
ing people’s temporal intents in web searches. We analyze
the importance of different temporal features and discuss
the impact of neural network structures to the TID results.
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1. INTRODUCTION
In the TID English subtask of the NTCIR-12 Tempo-

ralia Task [6], the KGO team carries forward their previous
work in the Temporal Query Intent Classification subtask,
as the previous TUTA1 team in the NTCIR-11 Temporalia
Task. Our work focuses on the development of temporal
features, in the sense of resolving temporal information in
search queries, and the construction of a deep neural net-
work, for disambiguating people’s temporal intents in the
web search with a probabilistic interpretation.

Although the explicit temporal features such as time gap
and verb tense have been proved to be effective in classi-
fying temporal query intents, they can be only observed in
a very small part of web search queries in the real world
[15]. For feature development, we take Wikipedia as a gen-
eral knowledge base, for acquiring the temporal information
about named entities in a search query. All the explicitly
time-related information is extracted from the Wikipedia
descriptions. We evaluate the correlation between a search
query and the content of Wikipedia descriptions, to avoid
taking the misleading information in TID.

We construct a deep neural network to solve the TID prob-
lem, based on our extracted temporal features. To generate
probabilistic predictions of the queries’ temporal intents, we
employ the softmax activation function for neural network

output. The neural network contains a dropout layer be-
fore each activation layer, which forces the model to learn
robust feature abstractions during training, by randomly ig-
noring a fraction of the input units. The rest configurations
of our deep neural network, including the number of hidden
layers, the number of neurons in the input and hidden lay-
ers, the activation function for each hidden layer, and the
batch size for fitting the model, are selected with a 5-fold
cross-validation on the Dry Run data.

The rest of this paper is organized as follows. Section 2
briefly reviews the related work in retrieving temporal in-
tents in search queries. Section 3 describes our temporal
feature extraction method in detail, and section 4 illustrates
the construction of a deep neural network for TID. We re-
port our experiment and analyze results in section 5, and
conclude this paper in section 6.

2. RELATED WORK
The Temporal Query Intent Classification (TQIC) sub-

task in NTCIR-11 Temporalia task [9], as the previous chal-
lenge of TID, attracted 17 runs from 6 teams. The problem
was to generate a temporal label for each query from Past,
Recent, Future, and Atemporal. Most teams focused on the
development of effective features for temporal intent classi-
fication. It turned out that raw words (or lemmas), verb
tense (or part-of-speech tags) [7, 15, 1, 3], temporal dictio-
nary [7, 5, 1, 3], and web search results [7, 5, 1, 3] were the
most widely employed features, time gap [7, 15, 13] tempo-
ral expression [7, 13, 1], and named entities [7, 15, 1] were
also actively explored, while features like query length [13]
were less employed. Different classification algorithms were
also employed for TQIC. However, because the training set
only contained 100 samples [9] most classifiers suffered an
over-fitting problem [15].

3. TEMPORAL FEATURE EXTRACTION
Web search queries are short. Fig. 1 plots the distribu-

tions of query length in the Dry Run and Formal Run sets
of the TID and TQIC tasks. Because most search queries
only contain a few words, the literal information in queries
is usually not concrete enough for inferring people’s tempo-
ral intents in web searches. For computers to understand
people’s temporal intents, the temporal information about
searching events, which only exists in the human knowledge,
must be explored.

Before diving into the feature extraction, we first look into
some typical examples in the TID Dry Run set as shown
below. The floating point numbers denote a probability dis-
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Figure 1: Distribution of query length. “dr” and “fo” are the
abbreviations for Dry Run and Formal Run, respectively.
COMB represents the combination of Dry Run and Formal
Run data from TQIC and TID.

tribution of the temporal intent for a search query. We can
easily tell the temporal label Past for a query like beer night
1974 or when was electricity invented, either by compar-
ing the explicit time description like the year 1974 with the
query submission time May 1, 2013, or by inferring from
the tense of English verbs like was. However, telling the
temporal labels for release date for iphone 6 or memorial
day is not easy. We need to find the temporal information
about iphone 6 and memorial day elsewhere, and making
predictions based on such information.

Pa Re Fu At Time Query
1.0 0.0 0.0 0.0 May 1, 2013 beer night 1974
1.0 0.0 0.0 0.0 May 1, 2013 when was electricity invented
0.0 0.0 1.0 0.0 May 1, 2013 release date for iphone 6
0.0 0.0 0.6 0.4 May 1, 2013 memorial day

We illustrate the development of a series of explicit and
implicit temporal features in search queries in our participa-
tion of TID, which extends our previous work in TQIC by
exploring Wikipedia as a knowledge base.

3.1 Explicit Temporal Features
The Uppermost Verb Tense feature indicates the tense

of a query, which could be directly obtained by picking tense
information from the main verb in a query. And since the
main verb should always locate in a higher level than the
other verbs in a syntactic tree, the tense information comes
from the uppermost verb. As illustrated in our previous
work [15], a verb tense can be implied through its part-
of-speech label. For the example when was electricity in-
vented, we pick part-of-speech tag of the uppermost most
verb was, as shown in Fig. 2, to construct the temporal fea-
ture UVT VBD. We employ the Stanford Parser library[14]
in Stanford CoreNLP pipeline for syntactic parsing.

The Time Gap feature represents the difference between
an explicit time expression like year 1974 and the query sub-
mission time. We extract the time information in queries
with the SUTIME library[2] in Stanford CoreNLP pipeline.
Time fields of year, month, day, season, and period in the
time expressions are then normalized for differentiation with
respect to the query submission time. We generate the
temporal features of DIFF past and DIFF future for the

ROOT
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WRB
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SQ

VBD
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NP

NP
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VP
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Figure 2: Syntactic tree for UVT feature extraction.

past and future time expressions, and generate features of
DIFF same year, DIFF same month, DIFF same day, and
DIFF this for the same time expressions with different gran-
ularities. For example, DIFF same month is generated for
time expression May, 2013 with respect to the query sub-
mission time May 1, 2013.

3.2 Inexplicit Temporal Features
The Temporal Named Entity feature extracts tempo-

ral information of a named entity in the search query, by
exploring Wikipedia as a knowledge base for the temporal
information retrieval and by evaluating the semantic simi-
larity between the search query and Wikipedia descriptions
for the temporal correlation resolution.

We extract named entities in a query with the Stanford
Named Entity Recognizer [4] in Stanford CoreNLP pipeline
and with the TextRazor1 Entity Extraction service. The
knowledge about named entities are then obtained by query-
ing Wikipedia for summaries with the Wikipedia API for
Python2. For example, we get the Wikipedia summary of
iphone 6 as follows. The iPhone 6 and iPhone 6 Plus are
smartphones designed and marketed by Apple Inc. The de-
vices are part of the iPhone series and were unveiled on
September 9, 2014, and released on September 19, 2014. The
iPhone 6 and iPhone 6 Plus jointly serve as successors to the
iPhone 5C and iPhone 5S. In the next step, we parse each
sentence of the summary and extract Time Gap features.
For iphone 6, we get DIFF future from September 9, 2014
and DIFF future from September 19, 2014, respectively.

To resolve the correlation between a Time Gap feature and
a named entity, we further extract their context information
from the summary sentence and from the query respectively,
and evaluate the similarity. Specifically, we extract the clos-
est predicate to the Time Gap expression as its context based
on the dependency parsing result from Stanford Parser, and
extract the other words in the query except the named en-
tity as its context. In the previous example, unveiled and
released are extracted as the contexts of September 9, 2014
and September 19, 2014, respectively, and release date for
is extracted as the context of iphone 6. For each pair of the
Time Gap feature t and named entity e, we map their con-
text words w to v(w) in a 1000-dimensional semantic space
based on a word2vec model [8, 10, 11, 12], which has been

1https://www.textrazor.com
2https://pypi.python.org/pypi/wikipedia
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trained on the English Wikipedia (Feb 2015)3, and calculate
their context similarity as given below

s(t, e) = cos

(
1

|Ct|
∑
w∈Ct

v(w),
1

|Ce|
∑

w∈Ce

v(w)

)
, (1)

where Ct and Ce are the contexts for t and e respectively. In
this case, we get the context similarities of 0.2511 and 0.3291
for resolving the correlations of two DIFF future features
with respect to the search query.

The Holiday feature explores the holidays as a special
kind of named entity, and extracts their temporal informa-
tion based on a holiday database4. Since some holidays are
country-dependent, such as the memorial day in the United
States, we extract the country information from queries with
the TextRazor Entity Extraction and consider the United
States as the default country on an naive assumption. And
because some holiday dates are year-dependent, such as the
last Monday in May for memorial day varies in each year,
we further extract the year information from queries and
consider the query submission year as a default. We query
holiday date from the holiday database, with the holiday
name, country, and year information, and differentiate it to
the query submission time to get the DIFF * features. In
case of memorial day submitted on May 1, 2013, we get its
holiday date of May 27, 2013 and generate the DIFF future
feature.

3.3 Other Features
The People and Time features are the specific named

entity categories for people and time, based on the TextRa-
zor Entity Extraction results. For example, Amy Winehouse
is recognized as deceased person, measured person, and per-
son in the query how did Amy Winehouse die, while Super
Bowl is recognized as recurring event in query what time
does the Super Bowl start. These features are meaningful in
the sense that they could combine different people or events
together according to their semantic similarities, which ef-
fectively decrease the feature space to avoid over-fitting.

The Lemma feature normalizes words in a query, which is
extracted with the Stanford Parser library. For each word in
a query, we transform it to its dictionary form as a Lemma
feature. Because the verb tense information would be lost
in lemma, which is important for disambiguating people’s
temporal intents, we annotate the part-of-speech to verb
lemmas. For example, was and invented are normalized as
VBD be and VBD invent5 in the query when was electricity
invented.

4. NEURAL NETWORK CONSTRUCTION
We construct a deep neural network for solving the TID

problem, with the temporal features extracted as described
in section 3. The deep neural network is depicted in Fig.
3, with an input layer receiving the temporal features of a
search query, an output layer generating the probabilistic
predictions for four temporal categories, and several hidden
layers combining the features into more abstract levels.

3https://github.com/idio/wiki2vec
4http://www.timeanddate.com/holidays/
5VBD is a wrong part-of-speech tag generated by the Stan-
ford Parser. The correct one should be VBN.

…

Input Activation Dropout Activation Dropout Activation Output

… … … … … …

Figure 3: Deep neural network for TID.

A softmax activation is employed in the output layer for
generating the probabilistic predictions p̃ as given below

p̃j = p(y = j|x;W )

=
exp(xTWj)∑J

j′=1 exp(xTWj′)
.

(2)

The softmax activation calculates the probability of assign-
ing temporal category j to the output y given abstract fea-
tures in x with a parametric weight matrix W . J = 4
indicates the number of temporal categories for TID.

We employ cross entropy as the cost function

H(p, p̃) = −
J∑

j=1

pj log p̃j . (3)

The cross entropy H(p, p̃) is a non-negative value which de-
scribes the dissimilarity between the true distribution p and
predicted distribution p̃. H(p, p̃) gets its minimum value 0
if p̃ equals p. The training algorithm tries to minimize the
mean of H(p(i), p̃(i)) for each training sample i, in order to
make the neural network generate probabilistic predictions
on temporal intents as close as to the training data.

We construct a deep neural network to solve the TID prob-
lem, in the sense that raw temporal features especially for
the People, Time, and Lemma could be mapped into ab-
stract features with a series of linear and non-linear filtering.
This is achieved with multiple layers of hidden neurons in
the deep neural network, as shown in Fig. 3. Each neuron of
a hidden layer would receive the outputs of all neurons from
its previous layer, and puts a weighted summation on these
outputs before generating its own output based on an acti-
vation function. In the network, neurons on the same layer
are similar in their function but receive the output of previ-
ous layer through different paths. Therefore, all neurons in a
hidden layer put different weights for their weighted summa-
tion but keep the same activation function, which is selected
from the activation set6 of softplus, relu, tanh, sigmoid, hard
sigmoid, and linear, based on a 5-fold cross-validation.

To avoid over-fitting the deep neural network, we add a
dropout layer before each activation layer except the first
one, which randomly ignores a fraction of outputs from the
previous layer. During training, neurons in the activation
layer activate on only a random fraction q of the weighted
summation which is filtered by the dropout layer, and try to
generate the same predictions as before. During testing, the

6http://keras.io/activations/
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dropout layer does not filter outputs from its previous layer
but shrinks the values in x to qx. The model is robust in the
sense that it keeps a redundancy for feature abstraction in
the hidden layers during training, which would save it from
making wrong predictions for unseen samples during testing,
on the assumption that redundant features in abstraction
could provide crucial information for unseen samples for the
final output.

5. EXPERIMENT
The TID subtask succeed the TQIC subtask in NTCIR-

11, to predict the probabilities in 4 categories, i.e. Past,
Recent, Future, and Atemporal, for analyzing people’s tem-
poral intents in web search queries. The difference between
two subtasks is that TID allows multiple temporal labels
in one query to reflect the possibilities of different interpre-
tations while TQIC only allows one temporal label in one
query. Because the data fields are transferable, we incorpo-
rate the TQIC data into the TID Dry Run set for training
deep neural network, based on the assumption that there is
no possibility mass for the temporal labels except the tagged
one in TQIC data. And we use this model to generate the
probabilistic predictions in the TID Formal Run set.

We employ the averaged per-class absolute loss score

loss(p, p̃) =
1

J

J∑
j=1

|pj − p̃j | (4)

and the cosine similarity score

sim(p, p̃) =

∑J
j=1 pj × p̃j√(∑J

j=1 pj × pj
)(∑J

j=1 p̃j × p̃j
) (5)

for feature selection, model selection, and the final submis-
sion evaluation, where p and p̃ are the true and predicted
temporal probabilities of a query, and the subscript versions
of pj and p̃j represent the true and predicted probabilities
in temporal category j.

The feature selection is based on a simple neural network
with only one hidden layer. We set 100 neurons in the hid-
den layer and the relu activation function for neurons in
this layer. The model is fitted with a batch gradient de-
scent algorithm, with 100 query samples in each batch. The
TID results based on a 5-fold cross-validation in the training
set indicates that feature combination of Uppermost Verb
Tense, Time Gap, Temporal Named Entity, Holiday, Peo-
ple, and Lemma renders the best loss and cos scores. The
Time feature is not included this feature combination, since
the information in Time could have been covered by the
Temporal Named Entity and Holiday features.

The parameter selection for deep neural network is based
on sampling parameter values from the following uniform
distributions

L ∼ unif(1, 3), (6)

log2(n(l)) ∼ unif(2, 7), (7)

a(l) ∼ unif(1, 6), (8)

log2(b) ∼ unif(6, 9), (9)

where L denotes the number of hidden layers, n(l) is the
number of neurons in layer l, a(l) is the index of activation
function from {softplus, relu, tanh, sigmoid, hard sigmoid,

linear}, and b is the batch size in training. We also use early
stopping to prevent over-fitting, by setting the number of
epochs (N) in training based the averaged accuracy and loss
scores, through a 5-fold cross validation.

We submit 3 Formal Run results based on the models
selection performance.

• KGO-TID-E-1: L = 2 hidden layers, with n(1) = 32
and n(2) = 16 neurons for each layer, activations of relu
and hard sigmoid for each layer, batch size of b = 256,
and N = 385 for the number of training epochs.

• KGO-TID-E-2: the same as KGO-TID-E-1, except
N = 392 for the number of training epochs.

• KGO-TID-E-3: L = 3 hidden layers, with n1 = 64,
n2 = 32, and n3 = 16 neurons for each layer, acti-
vations of softplus, hard sigmoid, and linear for each
layer, batch size of b = 256, and N = 578 for the
number of training epochs.

The evaluation scores of our submissions are plotted in
Fig. 4. Through 3 submissions, we find KGO-TID-E-2
with fewer layers rendering the best mean loss of 0.1676 and
KGO-TID-E-3 with more layers rendering the best mean
similarity of 0.8136. Besides, the maximum loss in KGO-
TID-E-1 turns out lower than those in KGO-TID-E-2 and
KGO-TID-E-3 and the minimum similarity in KGO-TID-E-
1 turns out higher than those in KGO-TID-E-2 and KGO-
TID-E-3. This suggests that the worst error of neural net-
work in KGO-TID-E-1 is still better than the worst errors
of the other neural networks. In addition, the minimum
loss in KGO-TID-E-3 turns out lower than those in KGO-
TID-E-1 and KGO-TID-E-2 and the maximum similarity in
KGO-TID-E-3 turns out higher than those in KGO-TID-E-1
and KGO-TID-E-3. This implies that the best prediction of
neural network in KGO-TID-E-3 is better than the best pre-
dictions of the other neural networks. KGO-TID-E-3 turns
to have the largest range and the smallest interquartile range
in both loss and similarity distributions, which suggests that
it generates more predictions with the medium quality than
KGO-TID-E1 and KGO-TID-E2, and a few predictions with
the best and the worst qualities at the same time.

We plot the association between temporal features and
temporal labels within the training corpus, as shown in Fig.
5. The association is evaluated by the normalized point-wise
mutual information (npmi)

npmi(xi; yj) = −log
p(xi, yj)

p(xi)p(yj)
/log p(xi, yj), (10)

in which xi and yj are the temporal feature and temporal
label, respectively. The subplots in the upper-left, upper-
right, lower-left, and lower-right corresponds to Past, Re-
cent, Future, and Atemporal labels. We integrate temporal
features into categories, including the uppermost verb fea-
tures (UVT), the verb tense feature (VT), the time gap fea-
tures (TG), the named entity features (NE), and the lemma
features (LM). For all temporal labels, many UVT features
are centering around 0 npmi, since we use UVT NULL for
many queries which do not contain an uppermost verb. Keep-
ing this feature might have confused the neural network.
Most VT features diverge from 0 npmi, for Past, Future, and
Atemporal, and the majority of TG and NE features diverge
from 0 npmi for all temporal labels, suggesting the features
are sensitive for these labels. The LM feature spreads in a
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Figure 4: Distribution of averaged per-class absolute loss and cosine similarity in 3 Formal Run submissions.
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Figure 5: npmi between temporal features and labels.

wide npmi range, for all temporal labels, indicating that a
finer investigation of lemmas with respect to the temporal
labels could render further improvement.

6. CONCLUSION
In this paper, we described our participation in the Tem-

poral Intent Disambiguation (TID) English subtask of the
NTCIR-12 Temporalia Task. Because most queries contain
very few words, the literal information in queries is usually
not concrete enough for inferring people’s temporal intents.
Our work focused on exploring the temporal information
underlying queries, based on the general knowledge from
Wikipedia and the evaluation of context semantic correla-
tions. The extraction of explicit temporal features, inexplicit
temporal features, and other features has been thoroughly
illustrated in this paper. We built deep neural network
models to generate probabilistic distributions on 4 temporal
intents, given these extracted temporal features in search
queries. Dropout layers have been incorporated in the deep
neural networks before each activation layer, which forces
the model to learn robust feature abstractions in order to
avoid over-fitting. The TID Dry Run data has been com-
bined with the TQIC data in NTCIR-11 to construct a large
training data set, based on which we selected the deep neu-
ral network structure through a 5-fold cross-validation and
trained temporal intent prediction models. In our 3 sub-
missions, KGO-TID-E-2 with fewer layers achieved the best
loss score, and KGO-TID-E-3 with more layers rendered the
highest similarity score. We also examined the association
between different temporal features and temporal labels, and

suggested some directions for improvement.
Our future work in TID would focus on learning of the

temporal knowledge in natural language descriptions from
Wikipedia and other sources of knowledge.
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