








of prediction. Based on this phenomenon, we chose LDA model, 
which is both well-performed and stable, to do feature selection 
and got the result as shown in Table 6. 

Table 6. Feature Selection based on LDA model 

Run Composition AvgCosin AvgAbsLoss 

4 baseline 0.8812 0.1380 

5 baseline+f7 0.8825 0.1343 

6 baseline+f7+f20 0.8831 0.1339 

7 baseline+f7+f14 0.8841 0.1335 

8 baseline+f7+f14+f13 0.8886 0.1286 

6. CONCLUSIONS  
This paper details the approach DUT-CH group addressed for 

Temporalia task at the NTCIR-12. We participate in TID subtask 
(Chinese) aiming at predicting the distribution of four temporal 
intents. For TID Chinese subtask, the formal run results were 
produced by adopting all the designed features to linear SVC 
model, Logistic Regression model with l1 penalty and Random 
Forest model with class weight balanced. After the submission of 
the formal run, we did further experiments to compare different 
models and feature composition and finally got a better and more 
stable result by LDA model and selected time gap, word-based 
probability distribution vector, temporal trigger word, Google 
Trends’ time gap, center word and its Part-of-speech as good 
features. 

In the future work, we will exploit more implicit features by 
analyzing time-series data, Google Trends and the documents 
returned by search engines like Google Search and Baidu Search. 
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