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ABSTRACT
The GIR team participated in the NTCIR 12 Temporal In-
formation Access (Temporalia) Task. This report describes
our approach to solving the Temporal Intent Disambigua-
tion (TID) problem and discusses the official results. We
explore the rich temporal information in the labeled and
unlabeled search queries. A semi-supervised linear classi-
fiers is then built up to predict the temporal classes for each
search query.
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1. INTRODUCTION
The GIR team at University of Glasgow participated in

the the NTCIR 12 Temporal Information Access (Tempo-
ralia) Task [3]. This minority report describes our approach
to solving the Temporal Intent Disambiguation (TID) prob-
lem and discusses the official results. For detailed intro-
ductory information of this task, please refer to the task
design paper [2] and the overview paper [3]. This task in-
vestigate the identification of temporal information over four
categories, namely, “past”, ”recent”, “future”, and “atempo-
ral”. Since the average length of queries are very short, e.g.,
4.2 words in dry-run phase, to find useful temporal features
in queries and to explore the background information (es-
pecially for named entities) seem to be prominent in this
subtask. For those search queries with explicit temporal ex-
pression or predicate verbs, we extract the “time gap” and
“verb tense” features, separately. For those with no temporal
information, we submit them to Google to collect temporal
features for us to infer its temporal state.

2. APPROACH
Our system consists of two separate modules: (a) identi-

fying temporal features in search queries, and (b) exploring

the contextual information in these queries. In this section,
we detail the temporal information extraction for search
queries, and explain the learning of semi-supervised classi-
fier, based on the labeled and unlabeled training examples,
for Temporal Query Intent Classification.

When it comes to query intent classification, unlabelled
queries can be easily crawled from internet without mak-
ing too much effort (everything can be made automated by
a pre-defined program); on the other hand, it’s not a triv-
ial work for even experts (let alone people with no such
expertise) to label the query manually especially when the
required corpus is in a large scale.

Under such context, semi-supervised learning would be
suitable to reduce the cost for training dataset construc-
tion. But the prerequisite of co-training - two sets of features
working independently teach each other iteratively in a mu-
tual iterative manner - should be satisfied in the first place
[1]. Intuitively textual features play an important part and
can fit into this context - they can analyze the query by un-
derstanding the semantics. In the same time, we find that
there are also plenty of contextual information associated
with each query available when submitting the query, such
as verb tenses and temporal expressions returned by Google
results, which provides different perspective to understand
the query complementarily.

2.1 Textual Features
Textual pre-process is done by using Weka API. As for

textual feature, we find that 3-gram characters and word
have a better performance than other options. While 3-gram
character can give a slightly better result, word is chosen as
the textual representation as it is easier for people to have
a better understanding of it, and can consequently allow us
to fix up mistakes swiftly. The text features of a query are
extracted from the bag-of-words content of the query after
standard pre-processing steps (tokenization, lower-casing,
stopword-removal, and stemming) [4]. Finally each query
is represented as a vector of terms weighted by TF×IDF [4].

2.2 Contextual Features
A total of 3 contextual features are learned in order to

build the classifier. To capture the temporal features, we
resort to the temporal expressions and verb tenses of a query.
A temporal expression in a query is a sequence of terms
that represent a point in time, a duration or a frequency.
For example, two pre-annotated temporal expressions are
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extracted as:

1. <t val=201007> July 2010</t>

2. <t val=201605”>the end of May</t>

Verb tense is a specific indicator that signals a situation
takes place. In a search query, it is possible to observe mul-
tiple verbs with different verb tenses. For example, in the
query “an experience that you enjoyed while learning some-
thing new”, we can see two verbs, “VBD enjoy” and “VBG
learn”. In such scenarios, we can resort to the Stanford
Parser library in Stanford CoreNLP pipeline, and choose the
main predicate by picking the uppermost verb in the parse
tree. The tense of the main predicate then can be used to
represent the tense of the whole search query. Lastly, when
there is no temporal expressions and verb tenses, each query
is submitted to Google via Google Search API1 to serve as
the knowledge from external resources. The snippets of the
top 10 results are used as query expansion if no temporal
expressions and verb tense exist in the original query.

So the problem now lies in how to implement a co-training
framework to put together the mentioned two perspectives.
The co-training scheme using in our experiment is a ver-
sion similar to that of [1], our algorithm can be detailed as
follows:

Given:

* FQ and FH are word-based feature (only from query) and
contexutal features from Google results respectively

* CQ and CH represent classifiers trained using the above
features, respectively

* Ltrain is the labelled training dataset

* Ltest is the labelled testing dataset

* U is the unlabelled training dataset

Loop:

- CQ labels all instances from U by using FQ

- CQ picks out top KQ instances with the highest con-
fidence as dataset TQ, whose distribution of each
class is equal to that of Ltrain

- Remove TQ from U and add to Ltrain

- CH labels all instances from U by using FH

- CH chooses top KH instances of the highest confi-
dence as dataset TH , whose distribution of each
class is equal to that of Ltrain

- Remove TH from U and add to Ltrain

- If result evaluated on Ltest is below the expected
threshold T or iterative times gone beyond thresh-
old N, then jump out of the loop;

Notice that this task is essentially a multi-class problem,
and there are couple of options to cope with it namely one-
versus-one and one-versus-all. The former will construct 4
smaller binary classifiers first and then decide the class dis-
tribution by using a voting mechanism; the latter instead
will set up only one generic classifier and choose the in-
stance’s class upon the margin distance. Considering the
data size and time-complexity of the program, one-versus-
one is adopted instead of one-versus-all.
1https://developers.google.com/custom-search/json-
api/v1/overview

3. EXPERIMENT

3.1 Datasets and Metrics
The Temporal Intent Disambiguation (TID) Subtask sub-

task provides a dry-run dataset of 100 search queries for
developing the temporal classification models, and a formal-
run dataset of 300 search query samples for examining the
results. The details of the datasets and the metrics are de-
scribed in [3].

3.2 Results
A number of machine learning algorithms implemented

in Weka2, including C4.5, Random Forest, Naive Bayes, k-
Nearest-Neighbours, and Linear Support Vector Machine
(SVM), have been tried out for semi-supervised learning
(co-training). The one-vs-rest ensemble scheme was used
to achieve multi-class classification. Linear SVM kept to de-
liver the best classification performance in our experiments,
so we only report its results here. The system is evalu-
ated against Averaged Per-Class Absolute Loss (APCAL)
and Cosine Similarity. The formal run values our system
achieved are 0.326 for APCAL and 0.417 for Cosine Simi-
larity. We compare the following approaches:

1. Supervised Approach, which simply employ the origi-
nal dry run queries as training instances.

2. Semi-Supervised Approach, which is the method that
we described in Section 2, but without the enhance-
ment of any external resources.

3. Semi-Supervised Approach with external knowledge,
which is similar to the second one but is equipped with
the knowledge learned from Google.

Given the optimal parameter values, the classification per-
formances of those approaches on the formal run set with dif-
ferent sets of features, measured by precision, are reported in
Table 1. Consistent to the observation in [5], adding the un-
labelled instances brings substantial performance improve-
ment to the supervised approach. More importantly, it is
clear that semi-supervised approach coupled with external
knowledge from Google achieves the best results. The Lin-
ear SVM parameters are set to default values except that
the class weights are optimised for each query category by
dry run setting.

It is obvious that using both text features and contex-
tual features works better than using either kind of features
alone, for all query types.

4. CONCLUSIONS AND FUTURE WORK
The main contribution of this work is double-fold.
First, we identify several contextual features which can

be used together with standard text features by machine
learning algorithms to classify queries according to their un-
derlying temporal intent. Second, our experimental results
demonstrate that it is better to exploit both text features
and contextual features through the semi-supervise learning
framework, co-training, rather than simply combining them
in supervised learning, since the former can make use of a
large amount of unlabelled data.

2http://www.cs.waikato.ac.nz/ml/weka/
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Table 1: Table 1: The experimental results on formal-run dataset.

measures Supervised Semi-Supervised Semi-Supervised with External Knowledge

Cosine Similarity 0.366 0.384 0.417

Absolute Loss 0.416 0.358 0.326

In the future, we would like to explore more sophisti-
cated features, such as the name entities identified in the
query, which can provide a great deal of semantic informa-
tion about the original text. In addition, it will also inter-
esting to introduce more advanced semi-supervised learning
algorithm.
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