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ABSTRACT
The amount of medical and clinical-related information on
the Web is increasing. Among the various types of informa-
tion, Web-based data are particularly valuable, with Twitter-
based medical research garnering much attention. The NTCIR-
13 MedWeb (Medical Natural Language Processing for Web
Document) provides pseudo-Twitter messages in a cross-
language and multi-label corpus, covering three languages
(Japanese, English, and Chinese), and annotated with eight
labels (e.g., cold, fever, flu, and so on). The MedWeb task
classifies each tweet into one of two categories: those con-
taining a patient’s symptom, and those that do not. Because
our task settings can be formalized as the factualization of
text, the achievement of this task can be applied directly
to practical clinical applications. In all, eight groups (19
systems) participated in the Japanese subtask, four groups
(12 systems) participated in the English subtask, and two
groups (six systems) participated in the Chinese subtask.
This paper presents the results of these systems, along with
relevant discussions, to clarify the issues that need to be
resolved in medical natural language processing.

Keywords
Medical natural language processing, Twitter, Social media,
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1. INTRODUCTION
Medical reports using electronic media are now replacing

those of paper media. As a result, the importance of natu-
ral language processing techniques in various medical fields
has increased significantly. Our goal is to promote prac-
tical tools to assist precise and timely medical decisions.
In order to achieve this goal, a series of “shared tasks” (or
contests, competitions, challenge evaluations, critical assess-
ments) are being used to encourage research in information
retrieval. Several shared tasks have already been organized,
such as the Informatics for Integrating Biology and the Bed-
side (i2b2) task [14], organized by the National Institute of
Health (NIH)1 in the United States, the Text Retrieval Con-
ference (TREC) [19], the ShARe/CLEF eHealth Evaluation
Lab2 in the European Union, and NTCIR Medical tasks and
MedNLP workshops [13, 3, 4] had been held in Japan.

1https://www.nih.gov
2https://sites.google.com/site/shareclefehealth/

On the other hand, with the widespread use of the Inter-
net, lots of materials concerning medical care or health have
been shared on the Web and web mining techniques for uti-
lizing the materials have been developed. One of the most
popular medical applications of web mining is flu surveil-
lance, which aims to predict influenza epidemics based on
the use of flu-related terms [2, 10, 9, 20, 7, 8, 6, 15, 18,
12, 1, 17]. Most previous studies have relied on shallow
textual clues in Twitter messages, such as the number of oc-
currences of specific keywords (e.g., “flu” or “influenza”) on
Twitter. However, such simple approaches have difficulty
coping with the volume of noisy tweets. Thus, in order to
increase their accuracy, recent approaches [2, 12] have em-
ployed a binary classifier to filter out noisy tweets. Typical
examples of noisy tweets are those that simply express con-
cern or awareness about flu (e.g., “Starting to get worried
about swine flu”).

Given this situation, the NTCIR-133 MedWeb (Medical
Natural Language Processing for Web Document) task4 is
designed for obtaining health-related information by web
mining, focusing in particular on social media. Specifically
we propose a generalized task setting for public health surveil-
lance, referring to the following two characteristics:

• Multi-label: this task handles not only a single symp-
tom (influenza), but also multiple symptoms such as
cold, cough/sore throat, diarrhea/stomachache, fever,
hay fever, headache, and runny nose. Because a single
message could contain multiple symptoms, this is one
of the multi-labeling tasks.

• Cross-language: in contrast to the previous shared
tasks [14, 19, 13, 3, 4], this task covers multiple lan-
guages: Japanese, English, and Chinese. To build par-
allel corpora, we translated the original Japanese mes-
sages to English and Chinese.

We distributed each corpus to the participants, of whom
nine groups submitted results (37 systems). Specifically,
eight groups (19 systems) participated in the Japanese sub-
task, four groups (12 systems) participated in the English
subtask, and two groups (six systems) participated in the
Chinese subtask. Table 1 shows the list of participating
groups, and Table 2 summarizes the number of participat-
ing groups for each subtask. This report presents the results

3http://research.nii.ac.jp/ntcir/ntcir-13/index.html
4http://mednlp.jp/medweb/NTCIR-13/
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Table 1: Organization of groups participating in MedWeb
(listed in alphabetical order by Group ID)

Group ID Organization
AITOK Tokushima University, Japan
AKBL Toyohashi University of Technology, Japan
DrG The University of Tokyo, Japan
KIS Shizuoka University, Japan
NAIST Nara Institute of Science and Technology, Japan
NIL NIL Software Corp., Japan
NTTMU Taipei Medical University, Taiwan
TUA1 Tokushima University, Japan
UE University of Evora, Portugal

Table 2: Statistics of result submissions (listed in alphabet-
ical order by Group ID)

Group ID Japanese English Chinese
AITOK 2
AKBL 3 3
DrG 1
KIS 3
NAIST 3 3 3
NIL 1
NTTMU 3 3
TUA1 3
UE 3 3

of these groups, along with discussions, in order to clarify
the issues that need to be resolved in the field of medical
natural language processing.

2. CORPUS
The material for the MedWeb task is a collection of tweets

that include at least one keyword of target diseases or symp-
toms (for brevity, we refer to these simply as symptoms
hereafter). We set eight symptoms, including cold, cough/sore
throat (which we refer to as “cough”), diarrhea/stomachache
(“diarrhea”), fever, hay fever, headache, influenza (“flu”),
and runny nose.

Owing to the Twitter developer policy on data redistribu-
tion5, the tweet data crawled using the API are not publicly
available. Therefore, our data consist of pseudo-tweets cre-
ated by a crowdsourcing service.

In order to obtain the pseudo-tweets, we first collected
Japanese tweets related to each symptom from Twitter. Then,
we classified these tweets as positive or negative, based on
the work of [2]. Next, we extracted keyword sets that ap-
peared frequently in positive tweets and negative tweets. We
call these keywords seed words.

We then had a group of people create pseudo-tweets con-
sisting of 100 to 140 characters that included a symptom and
at least one of the seed words of the symptom. Each person
created 32 pseudo-tweets (two tweets × two keyword sets
(positive and negative) × eight symptoms). As a result, 80
people were able to generate 2,560 Japanese pseudo-tweets.

5https://developer.twitter.com/en/developer-
terms/agreement-and-policy

Table 3: Samples of pseudo-tweets of the eight symptoms.
English messages (en) and Chinese messages (zh) were trans-
lated from Japanese messages (ja).

In the last step, we had the Japanese pseudo-tweets trans-
lated into English and Chinese by relevant first-language
practitioners. Therefore, we also had 2,560 pseudo-tweets in
both English and Chinese. Table 3 shows samples of each
set of pseudo-tweets.

3. SYMPTOM LABELING
This section describes the criteria used for symptom la-

beling. These consist of basic criteria (Section 3.1) and
symptom-specific criteria (Section 3.2). The inter-annotator
agreement ratio (n=2) was 0.9851 (=20174/(2560×8)).

3.1 Basic criteria
The most basic criterion is that the labeling is examined

from a clinical viewpoint, considering the medical impor-
tance of the information. Thus, non-clinical information
should be disregarded.

For example, older information (by several weeks) and
non-severe symptoms (headache due to over-drinking) should
be labeled “n” (negative). The following three criteria de-
scribe the basic principles:

• Factuality: The Twitter user (or someone close to the
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Table 4: Samples of the training data corpus for the English subtask. ID corresponds to the corpora of other language (e.g.,
the tweet of “1en” corresponds to the tweets of “1ja” and “1zh”).

ID Message Cold Cough Diarrhea Fever Hay fever Headache Flu Runny nose
1en The cold makes my whole body weak. p n n n n n n n
2en It’s been a while since I’ve had allergy n n n n p n n p

symptoms.
3en I’m so feverish and out of it because of n n n p p n n p

my allergies. I’m so sleepy.
4en I took some medicine for my runny nose, n n n n n n n p

but it won’t stop.
5en I had a bad case of diarrhea when I tra- n n n n n n n n

veled to Nepal.
6en It takes a millennial wimp to call in sick n p n n n n n n

just because they’re coughing. It’s always
important to go to work, no matter what.

7en I’m not going today, because my stuffy n n n n n n n p
nose is killing me.

8en I never thought I would have allergies. n n n n p n n p
9en I have a fever but I don’t think it’s the p n n p n n n n

kind of cold that will make it to my
stomach.

10en My phlegm has blood in it and it’s really n p n n n n n n
gross.

Table 5: Exceptions for symptom labels.

Symptom Accept expressions Accept just a word Exceptions
with suspicion of a symptom “p” (positive) “n” (negative)

Cold X X - -
Cough X X Alcohol drinking -

Pungently flavored food
Diarrhea X X Overeating -

Indigestion
Alcohol drinking
Medication
Pungently flavored food

Fever X X Side-effect of injection -
Hay fever X X(only slight fever) - -
Headache X X - Due to a sense of sight or smell
Flu - - - -
Runny nose X - Hay fever Change in temperature

user) should be affected by a certain disease or have a
symptom of the disease. A tweet that includes only a
disease name or a symptom as a topic is removed by
labeling it as “n” (negative).

• Tense (time): Older information, which is meaning-
less from the viewpoint of surveillance, should be dis-
carded. Such information should also be labeled “n”
(negative). Here, we regard 24 hours as the standard
condition. When the precise date time is ambiguous,
the a general guideline is that information within 24
hours (e.g., information related to today or yesterday)
is labeled as “p” (positive).

• Location: The location of the disease should be spec-
ified as follows. If a Twitter user is affected, the infor-
mation is labeled as “p” (positive) because the location
of the user is the place of onset of the symptom. In

cases where the user is not affected personally, the in-
formation is labeled as “p” (positive) if it is within the
same vicinity (prefecture) as the user, and “n” (nega-
tive) otherwise.

3.2 Symptom-specific criteria
The fundamental annotation principles are described in

Section 3.1. However, there are several exceptions to the
above principles.

For example, a remark about a “headache” might not re-
late to a clinical disease (e.g., excessive drinking) When con-
ducting disease surveillance, such statements should be re-
garded as noise. To deal with disease-specific phenomena,
we build a guideline that addresses exceptions for each dis-
ease. For example, cases such as“excessive drinking,”“medi-
cation,”“pungently flavored food (including irritant),”“spir-
itual,” “motion sickness,” “morning,” “menstrual pain,” and
so on, should be excluded for “headache.” The exceptions
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Table 6: Participating systems in Japanese subtask (19 participating systems and two baseline systems). * indicates that the
method was tested after the submission of the formal run and, thus, was not included in the results.

System ID Models/Methods Language resources
AITOK-ja Keyword-based, Logistic regression -

Support vector machine (SVM)*
AKBL-ja Support vector machine (SVM), Fisher’s exact test Patient symptom feature word dict

Disease-X feature word dict1
Disease-X feature word dict2

DrG-ja Random forest -
KIS-ja Rule-based, SVM -
NAIST-ja Ensembles of hierarchical attention network (HAN) and -

deep character-level convolutional neural network (CNN) with
loss functions (negative loss function, hinge, and hinge squared)

NIL-ja Rule-based -
NTTMU-ja Principle-based approach Manually constructed knowledge for

capturing tweets that conveyed flu-related
information, using common sense and ICD-10

UE-ja Rule-based, Random forest Custom dictionary consisting of nouns selected
from the dry-run data set and heuristics

Baseline SVM (unigram, bigram) -

Table 7: Participating systems in English subtask (12 participating systems and two baseline systems)

System ID Models/Methods Language resources
AKBL-en Support vector machine (SVM), Fisher’s exact test Patient symptom feature word dict

Disease-X feature word dict1
Disease-X feature word dict2

NAIST-en Ensembles of hierarchical attention network (HAN) and -
deep character-level convolutional neural network (CNN) with
loss functions (negative loss function, hinge, and hinge squared)

NTTMU-en SVM, Recurrent neural network (RNNs) Manually constructed knowledge for
capturing tweets that conveyed flu-related
information, using common sense and ICD-10

UE-en Rule-based, Random forests Custom dictionary that consists of nouns
Skip-gram neural network for word2vec selected from the dry-run data set and

heuristics
Baseline SVM (unigram, bigram) -

are summarized in Table 5.

4. METHODS

4.1 Task settings
In the MedWeb task, we organized three subtasks: a Japanese

subtask, an English subtask, and a Chinese subtask.

Step 1: Training corpus distribution: The training data
corpus and the annotation criteria were sent to the
participant groups for development. The training data
corpus consists of 1,920 messages (75% of the whole
corpus), with labels. Each message is labeled “p” (pos-
itive) or “n” (negative) for each of the eight symptoms.

Step 2: Formal run result submission: After about a three-
month development period, the test data corpus was
sent to each participant group. The test data corpus
consists of 640 messages (25% of the whole corpus),
without labels. Then, the participant groups submit-
ted their annotated results within two weeks. Multiple
results with up to three systems were allowed to be
submitted.

Step 3: Evaluation result release: After a one-month evalu-
ation period, the evaluation results and the annotated
test data were sent to each participant group.

4.2 Evaluation metrics
The performance in the subtasks was assessed using the

exact match accuracy, F-measure (β = 1) (F1) based on
precision and recall, and Hamming loss [21]. The details of
the metrics are as follows.

• Exact match accuracy: the most strict metric.

• F1-micro and macro: the harmonic mean of precision
and recall.

• Hamming loss: xor loss (lower scores are better).

Note that “micro” is to calculate metrics globally by count-
ing all true positives, false negatives, and false positives.
On the other hand, “macro” calculates the metrics for each
symptom label, and then determines their unweighted mean.
Therefore, label imbalance is not taken into account.

5. RESULTS
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Table 8: Participating systems in Chinese subtask (six participating systems and two baseline systems)

System ID Models/Methods Language resources
NAIST-zh Ensembles of hierarchical attention network (HAN) and -

deep character-level convolutional neural network (CNN) with
loss functions (negative loss function, hinge, and hinge squared)

TUA1-zh Logistic regression, Support vector machine (SVM) Updated training samples using active learning
Logistic Regression with semantic information unlabeled posts downloaded with the symptom

names in Chinese
Baseline SVM (unigram, bigram) -

Table 9: Performance in the Japanese subtask (19 participating systems and two baseline systems). The results are ordered
by exact match accuracy.

System ID Exact match F1 Precision Recall Hamming loss
micro macro micro macro micro macro

NAIST-ja-2 0.880 0.920 0.906 0.899 0.887 0.941 0.925 0.019
NAIST-ja-3 0.878 0.919 0.904 0.899 0.885 0.940 0.924 0.019
NAIST-ja-1 0.877 0.918 0.904 0.899 0.887 0.938 0.921 0.020
AKBL-ja-3 0.805 0.872 0.859 0.896 0.883 0.849 0.839 0.029

UE-ja-1 0.805 0.865 0.855 0.831 0.819 0.903 0.902 0.033
KIS-ja-2 0.802 0.871 0.856 0.831 0.815 0.915 0.904 0.032

AKBL-ja-1 0.800 0.869 0.847 0.889 0.873 0.849 0.825 0.030
UE-ja-3 0.800 0.866 0.855 0.823 0.812 0.913 0.911 0.033

AKBL-ja-2 0.795 0.868 0.849 0.891 0.875 0.846 0.827 0.030
KIS-ja-3 0.784 0.855 0.831 0.840 0.816 0.871 0.850 0.034

Baseline: SVM (unigram) 0.761 0.849 0.835 0.843 0.828 0.854 0.842 0.036
KIS-ja-1 0.758 0.849 0.833 0.798 0.782 0.906 0.899 0.038

Baseline: SVM (bigram) 0.752 0.843 0.830 0.838 0.820 0.848 0.845 0.037
NTTMU-ja-1 0.738 0.835 0.829 0.770 0.761 0.913 0.921 0.042

UE-ja-2 0.706 0.815 0.803 0.696 0.702 0.983 0.984 0.052
NIL-ja-1 0.680 0.749 0.742 0.862 0.845 0.662 0.671 0.052
DrG-ja-1 0.653 0.777 0.774 0.825 0.808 0.734 0.779 0.049

NTTMU-ja-3 0.614 0.775 0.773 0.740 0.720 0.814 0.840 0.055
NTTMU-ja-2 0.597 0.770 0.753 0.741 0.706 0.801 0.813 0.056
AITOK-ja-2 0.503 0.706 0.696 0.726 0.738 0.687 0.767 0.067
AITOK-ja-1 0.092 0.368 0.355 0.243 0.238 0.757 0.765 0.304

5.1 Baseline systems

5.1.1 Overview
As a baseline, two systems were constructed using a sup-

port vector machine (SVM) based on unigram features and
bigram features. For feature representation, the bag-of-
words (BoW) model is used in each system. A tweet mes-
sage is segmented using MeCab [11] for Japanese messages,
NLTK TweetTokenizer6 [5] for English messages, and jieba7

for Chinese messages. The two systems have a linear ker-
nel, and the parameter for regularization C is set on 1.0. The
baseline systems are implemented using scikit-learn (sklearn)8

[16].

5.1.2 Performance
The performance of the baseline measured using all the

evaluation metrics is described in Section 4.2. Table 9, Ta-

6http://www.nltk.org/api/nltk.tokenize.html
7https://github.com/fxsjy/jieba
8http://scikit-learn.org/stable/

ble 10, and Table 11 show the results for the Japanese, En-
glish, and Chinese subtasks, respectively.

For the Japanese and Chinese subtasks, unigram SVM
performed better than bigram SVM did. On the other hand,
bigram SVM outperformed unigram SVM in the English
subtask. The highest average of exact match accuracy was
0.791 (English subtask) and the lowest was 0.756 (Japanese
subtask).

5.2 Participating systems

5.2.1 Overview
In all, 37 systems (of nine groups) participated and had

their results submitted in the MedWeb. Of these, 19 systems
(of eight groups) submitted results for the Japanese subtask,
12 systems (of four groups) submitted results for the English
subtask, and six systems (of two groups) submitted results
for the Chinese subtask. The participating systems for the
Japanese, English, and Chinese subtasks are summarized in
Table 6, Table 7, and Table 8, respectively.

Table 6 shows that most of the groups applied machine
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Table 10: Performance in the English subtask (12 participating systems and two baseline systems). The results are ordered
by exact match accuracy.

System ID Exact match F1 Precision Recall Hamming loss
micro macro micro macro micro macro

NAIST-en-2 0.880 0.920 0.906 0.899 0.887 0.941 0.925 0.019
NAIST-en-3 0.878 0.919 0.904 0.899 0.885 0.940 0.924 0.019
NAIST-en-1 0.877 0.918 0.904 0.899 0.887 0.938 0.921 0.020

Baseline: SVM (bigram) 0.800 0.866 0.856 0.865 0.849 0.868 0.865 0.031
UE-en-1 0.789 0.858 0.848 0.846 0.831 0.871 0.876 0.034

Baseline: SVM (unigram) 0.783 0.858 0.845 0.851 0.830 0.864 0.864 0.033
NTTMU-en-2 0.773 0.856 0.849 0.807 0.796 0.911 0.918 0.036
NTTMU-en-3 0.758 0.845 0.828 0.836 0.818 0.854 0.844 0.037

UE-en-2 0.745 0.821 0.809 0.861 0.838 0.786 0.800 0.040
UE-en-3 0.739 0.820 0.815 0.870 0.851 0.776 0.795 0.040

AKBL-en-2 0.734 0.819 0.799 0.832 0.808 0.806 0.793 0.042
AKBL-en-3 0.716 0.804 0.787 0.853 0.834 0.760 0.747 0.043

NTTMU-en-1 0.619 0.770 0.777 0.734 0.733 0.809 0.835 0.056
AKBL-en-1 0.613 0.772 0.755 0.656 0.649 0.936 0.945 0.065

Table 11: Performance in the Chinese subtask (six participating systems and two baseline systems). The results are ordered
by exact match accuracy.

System ID Exact match F1 Precision Recall Hamming loss
micro macro micro macro micro macro

NAIST-zh-2 0.880 0.920 0.906 0.899 0.887 0.941 0.925 0.019
NAIST-zh-3 0.878 0.919 0.904 0.899 0.885 0.940 0.924 0.019
NAIST-zh-1 0.877 0.918 0.904 0.899 0.887 0.938 0.921 0.020
TUA1-zh-3 0.786 0.860 0.844 0.772 0.760 0.970 0.971 0.037

Baseline: SVM (unigram) 0.780 0.858 0.843 0.831 0.815 0.888 0.883 0.034
TUA1-zh-1 0.773 0.853 0.838 0.766 0.753 0.963 0.965 0.039

Baseline: SVM (bigram) 0.767 0.850 0.835 0.824 0.806 0.878 0.876 0.036
TUA1-zh-2 0.719 0.824 0.809 0.712 0.710 0.978 0.982 0.049

learning approaches, such as SVM (as in the baseline sys-
tems), random forests, and neural networks. Several groups
constructed their own resources to enhance the original train-
ing corpus.

Similarly, for the English subtask, most of the groups ap-
plied machine learning approaches, such as SVM, random
forests, and neural networks, as shown in Table 7.

The Chinese subtask had two participating groups. The
one applied the same methods as the other subtasks, and
the other used a logistic regression and SVM, and updated
the training data using active learning.

5.2.2 Performance
The performance of the participating systems was also

measured using all the evaluation metrics described in Sec-
tion 4.2. Table 9, Table 10, and Table 11 show the results for
the Japanese, English, and Chinese subtasks, respectively.
The results in these tables are ordered by the exact match
accuracy of the systems. In addition, Figure 1, Figure 2, and
Figure 3 illustrate the results in the respective subtasks, or-
dered by (a) exact match accuracy, (b) F1 micro, and (c)
Hamming loss.

For the Japanese subtask, the best system, NAIST-ja-2,
achieved 0.88 in exact match accuracy, 0.92 in F-measure,

and 0.019 in Hamming loss, as shown in Table 9. The aver-
ages across the participating groups and the baseline systems
were 0.72, 0.82, and 0.051, respectively. The rank order of
the top four systems was the same in all measures. Ten
of the 17 participating systems outperformed both baseline
systems, as shown in Figure 1. The systems of the AKBL
group and the KIS group were constructed using an SVM, as
in the baseline systems. The AKBL group’s results indicate
that their system is effective in terms of using additional
language resources. The KIS group switched their methods
between an SVM and a rule-based method, depending on
the confidence factor.

For the English subtask, the best system, NAIST-en-2,
achieved 0.88 in exact match accuracy, 0.92 in F-measure,
and 0.019 in Hamming loss, as shown in Table 10. The sys-
tem is constructed using the same method as that used in
the Japanese subtask. The averages across the participat-
ing groups and the baseline systems were 0.77, 0.85, and
0.037, respectively. Only the top three of the 12 participat-
ing systems showed better performance than both baseline
systems, as shown in Figure 2.

For the Chinese subtask, the best system, NAIST-zh-2,
achieved 0.88 in exact match accuracy, 0.92 in F-measure,
and 0.019 in Hamming loss, as shown in Table 11. The
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(a) Exact match accuracy (b) F1-micro (c) Hamming loss

Figure 1: Performance in the Japanese subtask (19 participating systems and two baseline systems). (a) Exact match accuracy,
(b) F1-micro, and (c) Hamming loss. Higher scores are better in (a) and (b), and lower scores are better in (c).

system is constructed using the same method as that used
in the Japanese and English subtasks. The averages across
the participating groups and the baseline systems were 0.81,
0.88, and 0.032, respectively. Only the top four of the six
participating systems showed better performance than the
baseline system (SVM unigram) in exact match accuracy, as
shown in Figure 3.

6. DISCUSSION

6.1 Machine learning advantage
One of characteristics of the MedWeb task is to use a

multi-label corpus. Because the multi-label classification
is a complex task, the performance of straightforward ap-
proaches, such as rule-based and keyword-based methods, is
relatively lower than that of other approaches. In contrast,
we found that machine learning (e.g., an SVM) achieved bet-
ter performance. Of the participant systems, the ensemble of
a hierarchical attention network (HAN) and a deep convolu-
tional neural network (CNN) with loss functions, employed
by the NAIST group, achieved the best performance in all
subtasks.

Note that previous NTCIR Medical tasks and MedNLP
workshops [13, 3, 4] have shown that the rule-based ap-
proach is still competitive with the machine learning ap-
proaches. One of the reasons for this was the small size of
the corpus they used. Although the size of the corpus is
also limited in this task, this result shows the advantage of
the complex machine learning, indicating the advancement
of machine learning techniques.

6.2 Language comparison
The MedWeb task provided a cross-language corpus. Al-

though this is another characteristic of this task, only one
group (NAIST) challenged all subtasks, which was fewer
than we expected. The Japanese subtask had the highest

participation (19 systems from eight groups) and the Chi-
nese subtask had the lowest participation (six systems from
only two groups), which was also lower than expected. The
performance varied depending on the subtasks.

Figure 4 shows the distribution of the three metric scores
of the systems in each subtask. For the Japanese subtask,
the performance varied widely, relative to that of the other
subtasks. Although the Chinese subtask had the lowest par-
ticipation, their performance was relatively high. The four
groups that participated in the Japanese subtask also chal-
lenged the English subtask, with most achieving worse re-
sults in the English subtask. This indicates that the diffi-
culty of classification is Japanese, English, and Chinese, in
increasing order of difficulty. This is a surprising result, be-
cause most of the groups come from Japan, which means
they are familiar with the Japanese NLP.

This might indicate that the Chinese language has less
ambiguity in clinical factuality analyses. Another possibility
is that the process we used to generate the corpora had a
language bias. For example, the translations from Japanese
to English and Chinese may have reduced the ambiguity of
the language in each case. In order to test for a language
bias, experiments based on different directions of translation
are necessary. This is left for future work.

Note that the baseline systems performed best in the En-
glish subtask. This indicates that the standard settings for
the SVM are effective in terms of classifying English tweets.

6.3 Limitations
The corpora provided by the MedWeb task have limita-

tions. The first is the generating process. For example,
the translation process might bias the results, as described
above. In addition, our pseudo-tweets do not include several
tweet-specific features such as reply, retweet, hashtag, url,
and so on.

Another limitation is the size of each corpus (1,920 mes-
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Figure 2: Performance in the English subtask (12 participating systems and two baseline systems). (a) Exact match accuracy,
(b) F1-micro, and (c) Hamming loss. Higher scores are better in (a) and (b), and lower scores are better in (c).

sages are used as training data, and 640 messages are used
as test data). Regardless of these limitations, we believe this
is a valuable attempt to generate and share a cross-language
corpus consisting of multi-label pseudo-tweets.

Even though our corpus has some limitations, we still be-
lieve it is helpful as a benchmark for tweet-based applica-
tions, because it is freely available and covers multiple lan-
guages.
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7. CONCLUSION
This paper provided an overview of the NTCIR-13 Med-

Web task. This task is designed as a more generalized task
for public surveillance, focusing on social media (e.g., Twit-
ter). In particular, the task’s goal is to classify symptom-
related messages. This task has two characteristics: (1)
multi-label (cold, cough, diarrhea, fever, hay fever, headache,
flu, and runny nose) and (2) cross-language (Japanese, En-
glish, and Chinese). In total, nine groups (37 systems) par-
ticipated in the MedWeb task. Specifically, eight groups (19
systems) participated in the Japanese subtask, four groups
(12 systems) participated in the English subtask, and two
groups (six systems) participated in the Chinese subtask.
The results empirically demonstrate that a machine learning
approach is effective in terms of tweet classification, provid-
ing a foundation for future, deeper approaches.
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Figure 4: Statistical summary of the performance in each of the subtasks (ja: Japanese, en: English, and zh: Chinese). (a)
Exact match accuracy, (b) F1-micro, and (c) Hamming loss. Higher scores are better in (a) and (b), and lower scores are
better in (c). The bottom and top of a box are the first and third quartiles, the band inside the box is the median, and the
dotted band inside the box is the mean. Dots on the right side of the box represent the distribution of values of participating
systems.
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