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ABSTRACT
In this paper, the participation of the PBG research team in
the NTCIR-13 Lifelog LAT, LSAT, and LEST tasks is de-
scribed. In common with these three subtasks, our team fo-
cuses on both images and locations and analyzes them with
visual and location indexing methods. The results obtained
demonstrated outstanding performance, and we clarified ef-
fective features for solving lifelog tasks.

Team Name
PBG

Subtasks
Lifelog Annotation Task (English)
Lifelog Semantic Access Task (English)
Lifelog Event Segmentation Task (English)

Keywords
ImageNet, Places, D-star, DBSCAN, DNN, Gated CNN

1. INTRODUCTION
The PBG research team of NTT Service Evolution Lab-

oratories in Japan participated in the Lifelog Annotation
(LAT), Lifelog Semantic Access (LSAT), and Lifelog Event
Segmentation (LEST) subtasks of the NTCIR-13 Lifelog-
2 Task [4]1. Life-logging sensors have become more and
more popular, and people naturally wear them in the form
of smartwatches, smartphones, and so on. Lifelog data is
composed of multimodal information such as images, body
metrics, e.g., heart rates, calories, and skin temperature, and
GPS data, and they are used to effectively remind users’ im-
portant information and improve their daily lives. However,
the amount of such lifelog data increases as time proceeds,
and manually finding useful information is difficult from a
large amount of data. Solving this lifelog task is important
for automatically indexing daily life.

The common problem with LAT, LSAT, and LEST is un-
derstanding user activity and context from lifelog data. For
this task, although we can use a large amount of a specific
user’s lifelog data with various modals, we cannot directly
obtain semantic information. Our team focuses on both im-
ages and locations because we think that the most important

1http://ntcir-lifelog.computing.dcu.ie/

point for understanding user activity and context in daily life
is what users are doing what, where, and when. In this pa-
per, to obtain visual semantics from images, we apply visual
indexing methods using deep neural networks trained on Im-
ageNet and Places and detect a number of people by using
OpenCV2 library. For indexing location information on each
user, we adopt D-star [8] and DBSCAN [3], each of which is
known to be effective in analyzing moving trajectories.

The remainder of our paper is organized as follows. In
Section 2, we describe visual indexing methods based on the
public datasets of ImageNet and Places. In Section 3, we
introduce a location indexing algorithm using D-star and
DBSCAN. In Section 4, Section 5, and Section 6, we explain
our approaches for solving each subtask and analyze official
results. We conclude the paper by briefly describing future
work in Section 7.

2. VISUAL INDEXING
The three subtasks, LAT, LSAT, and LEST, are required

to understand a user’s situation each minute. Although
lifelog images provide much information for understanding
a situation, they are not direct. Therefore, we estimate se-
mantic visual labels for images from three aspects of objects,
scenes, and number of people, each of which can aid in pre-
dicting user action, context, and social relation from each
image.

For object recognition, we apply two deep neural net-
work (DNN) models using GoogLeNet [12] and AlexNet [7],
trained on the ImageNet dataset of ILSVRC2012 [9]. Also,
for scene recognition, we use four DNN models using
GoogLeNet, AlexNet, VGG [11], and ResNet [5], trained on
the Places365 dataset [16]. These models were provided in
the Caffe framework [6] via github pages34. To take advan-
tage of several categories of features, we use the last output
layer of each network, i.e., 1000 and 365 visual concepts of
ImageNet and Places365, respectively.

For detecting the number of people in each image, our
team uses a pedestrian detection function that uses HOG
feature values with OpenCV. We get three values for the
number of people by using three threshold values in the func-
tion. The values were chosen to be 1.0, 1.5 and 2.0 on the
basis of our preliminary experimentation. Other parameters
were set to the default values in OpenCV.

2http://opencv.org
3https://github.com/BVLC/caffe/tree/master/models
4https://github.com/CSAILVision/places365
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Concept label
computer, desk, document,
hand, indoor, person
notebook computer: 0.557,

ImageNet (GoogLeNet) laptop computer: 0.261,
monitor: 0.043, · · ·
office: 0.191,

Places (GoogLeNet) computer room: 0.110,
hospital room: 0.094, · · ·

Figure 1: Example of visual indexing result

Algorithm 1 D-Star

1: for each point pi in T do
2: Push pi in sliding window.
3: Create empty neighborhood N(pi) = Φ.
4: for each point pi in sliding window do
5: if d(pi, pj) ≤ ϵ then
6: Add pi to N(pj).
7: Add pj to N(pi).
8: end if
9: end for
10: Shift pi−q from sliding window.
11: if |s(N(pi−q))| ≥ mtime then
12: if pi−q is duration-joinable to an existing cluster

then
13: Merge N(pi−q) and all its duration-joinable clus-

ters.
14: else
15: Create a new cluster based on N(pi−q).
16: end if
17: end if
18: end for
19: return clusters {C | |s(C)| ≥ Tstay} as stay points.

With the above processes, our visual features extracted
from each image consisted of 3,463 dimensions: ImageNet
(1,000d) × 2 DNNs + Places365 (365d) × 4 DNNs + the
number of people (3d). An example of our visual indexing
result is shown in Fig. 1. This example also shows concept
labels that were provided in the phase 2 dataset by the task
organizers. ImageNet and Places estimated“comptuter”and
“office” with a high probability value.

3. LOCATION INDEXING
A GPS trajectory is hard to use directly to understand

user behavior. As preprocessing, we adopt stay point detec-
tion [15] and important location detection [14].

As stay point detection, we adopt the D-Star algorithm
(a duration-based stay region extraction algorithm) [8]. It
is based on the density-based algorithm and extended for
considering duration. For each point pi which in a trajectory,
we extract the neighborhood of pi as N(pi) = {pj ∈ T |

(1, 1)

(2, 4) (4, 10)

(5, 13)

(6, 16)

(8, 28)

(9, 31)

(10, 34)

(11, 37)

(12, 40)

Trajectory (index, time)

ε ε

(3, 7)

(7, 25)

Core Points

Outlier

Figure 2: Example of cluster determined by D-Star
for distance threshold ϵ, sliding window size q = 3,
and duration threshold for core point mtime = 15.
Point pi is described as (i, ti) in this figure.

Figure 3: Important locations detected by our ap-
proach from GPS data of user 2. (c)OpenStreetMap
contributors

d(pi, pj) ≤ ϵ∧ |i− j| ≤ q}. We call a point pi a “core point”
if the duration of its neighborhood N(pi) is longer than the
time threshold mtime. After that, we merge each pair of the
neighborhoods of core points if these neighborhoods overlap.
As a result, the D-Star algorithm outputs all merged result
as a set of stay points. Algorithm 1 shows the algorithm of
D-Star.

Figure 2 shows an example of a cluster of two duration-
joinable core points for a maximum distance threshold ϵ,
sliding windows size q = 3, and minimum duration threshold
for a core point mtime = 15. This example includes an
outlier (p5) and missing points between p6 and p7. First,
the neighborhood of p1, denoted as N(p1), is composed of
three points {pj | j ∈ {1, 2, 3}} such that d(pj , p1) ≤ ϵ and
|1−j| ≤ 3. Thus, p1 is not a core point because the duration,
|s(N(p1))| = t3 − t1 = 6 is not greater than mtime = 15.
Then, the neighborhood of p4 is composed of four points
{pj | j ∈ {3, 4, 6, 7}} such that d(pj , p4) ≤ ϵ and |4− j| ≤ 3.
Thus, p4 is a core point because its duration (|t7 − t3| = 18)
is greater than mtime. p7 is also a core point and duration-
joinable to p4 because their stay periods [7, 25] and [10, 34]
overlap each other. As a result, D-Star can extract a cluster
of non-consecutive points C = {pi | i ∈ {3, 4, 6, 7, 8, 9, 10}}
in a geospatial trajectory with outliers and missing points.

As important location detection, we adopt the DBSCAN
algorithm [3] which is a famous density-based clustering
method. Figure 3 shows the important locations detected
for user 2. The location information shown in Fig. 3, such
as near a station or in a park, is useful for understanding
his/her lifelog. In the rest of this paper, we use these impor-
tant location indices as input features. In addition, home
and work tags are delivered on behalf of GPS data while
users are in their house or office. We combine them into the
location index feature.
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4. LAT

4.1 Our approach

4.1.1 Data annotation
The objective of the LAT subtask is to appropriately an-

notate fifteen concept labels to all lifelog moments having
images. This task is known as multi-label classification,
which is addressed by using supervised machine learning ap-
proaches in many previous works. To handle this task in the
same way, the authors manually annotated multiple lifelog
labels for supervised training to each moment in four days,
Sept. 9, Sept. 10, Sept. 29, and Oct. 3, 2016 in the phase
1 dataset. Moreover, to decrease annotation error among
authors, we additionally annotated context labels that are
defined by authors (Table 1). Annotation criterion for these
labels was less ambiguous for annotators than the fifteen
lifelog labels on the annotation task because they were de-
cided on the basis of dataset images.

4.1.2 DNN model
Our team developed a DNN model with fusion layer of

the tri-modal data of image, location, and sensor, shown
in Fig. 4. Each component in the DNN model encodes ap-
propriate feature representation. The visual and location
indexing processes were explained in Section 2 and 3. The
sensor features consist of five values: steps, heart rate, GSR,
calories, and skin temperature. These values are normalized
to N (0, 1) across all days before input. One of the fea-
tures of our model is that it estimates context labels, which
are defined by our team, as another task. Herewith, im-
age encoding components can learn weight parameters from
context labels in addition to lifelog labels. Each of them is
encoded by a fully connected neural network to one feature
representation. After that, the output layer estimates fifteen
lifelog labels via fifteen sigmoid functions on the basis of the
feature values of the last fully connected layer.

For DNN optimization, our team applies Adam5 based on
gradient calculated by using the cross-entropy error func-
tion. Here, the number of mini-batch size was 10, and the
number of back-propagation iterations was 50.

4.1.3 Post-processing
There are topics in which the location condition was spec-

ified, such as “Commuting”, “Travelling” and “In a restau-
rant”. To tag these labels properly, we have to distinguish
where the user is around that moment. However, it is dif-
ficult to determine a user’s location by using only image
information.

To overcome this problem, we exploited location cluster
information that was obtained by D-Star and DBSCAN (see
Section 3). We set the “In a restaurant” score to 0 if the mo-
ment’s location cluster was not related to restaurants. Also,
regarding moments of movement, if the starting moments of
the movement were in the home or office cluster, the “Trav-
elling” score was set to 0; otherwise the “Commuting” score
was set to 0.

4.2 Official results
We submitted the eight runs shown in Table 2 and received

officially evaluated results for them. The image, location,
5We set hyperparameters to α = 0.0001, β1 = 0.9, β2 =
0.999, ϵ = 10−8.

Figure 4: Our team’s LAT DNN model
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Figure 5: Evaluation values of each run

and sensor columns denote the presence or absence of input
data. The PP column denotes whether post-processing by
location condition was done or not.

The official evaluation results are shown in Fig. 5. The
left and right figures are the mean average precision (MAP)
at rank K and F1 score at threshold T . For MAP@K,
PBGmodel2 and PBGmodel2-PP showed the highest score
among the other methods for all ranks. In comparison, the
highest score for F1@T for all threshold values was achieved
by PBGmodel5-PP. These results suggest that the visual
and sensor features can enhance the automatic annotation
performance; however, the location features reduce it.

To clarify whether topics are difficult or easy topics with
our methods, we show the F1@T=0.9 score of each method
for all topics in Fig. 6. The result suggests that LAT001,
LAT002, LAT008, LAT012, and LAT014 are easy top-
ics, and LAT003, LAT006, LAT007, and LAT013 are dif-
ficult topics, relatively. In particular, for LAT007, which is
“Watching TV,” the F1@T scores of our all methods were
zero because we could not find images with LAT007 in our
annotation phase. For LAT009, which is “Exercise,” the
evaluation scores of PBGmodel5-PP and PBGmodel5 were
higher than the other methods. We think that these two
methods could accurately train the context of exercise by
using the sensor feature. Finally, we confirmed the effective-
ness of the post-processing from the evaluation score with
LAT001 (Commuting), LAT002 (Travelling), and LAT012
(In a restaurant) because the PBGmodel5-PP’s evaluation
scores for these topics were higher compared with those of
the PBGmodel5.

5. LSAT
In this subtask, we have to retrieve a number of specific

moments in a lifelogger’s life. Moments are defined as se-
mantic events or activities that happened throughout the
day. The LSAT query consists of 24 topics. A half of them
are tagged as “easy,” and the rest are tagged as “difficult.”
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Table 1: Our defined context labels for solving LAT
Context label Label type Description
Conversation binary Does this image include a conversation scene?
Other people binary Does this image include other people?
Tourist site binary Does this image include a tourist site?

Eating activity binary Does this image include any eating related activity?
Place and Movement categorical Which is this image’s place category home, work,

commuting, staying outside of town of residence, or other?

Table 2: LAT submission runs of our team
Run ID Image Location Sensor PP

PBGmodel2 ✓
PBGmodel2-PP ✓ ✓
PBGmodel4 ✓ ✓
PBGmodel4-PP ✓ ✓ ✓
PBGmodel5 ✓ ✓
PBGmodel5-PP ✓ ✓ ✓
PBGmodel6 ✓ ✓ ✓
PBGmodel6-PP ✓ ✓ ✓ ✓
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Figure 6: F1@T=0.9 scores for each topic

We processed all the query topics automatically although
the task description says “the difficult topics are designed
for interactive systems.”

5.1 Our approach
Essentially, we adopted the usual text retrieval method

for this task, where each document has a document ID, i.e.,
image id, and its content is a set of labels assinged to the
corresponding image. There were two type of labels that we
used. Labels of the first type are given in the fields of the
dataset, such as official concepts, food logs, drink logs, place
names, and activities. Text strings in free description fileds
(food logs, drink logs, place names, and activities) are split
into words, i.e., labels. We counted the document frequency
for each distinct label to get the idf (inverse document fre-
quency). Labels of the second type were assigned by our
team using DNNs as described in Section 2. Stemming, case
folding, and stopword removal were done on all the labels
and query terms.

5.1.1 Query processing
We processed query topics and calculated scores largely

in the usual text retrieval manner. For each query topic, we
calculate a relevance score by matching query terms against
labels assinged to images. We use all of the “title,”“descrip-
tion,” and “narrative” part of each query topic and assign a
“weight” to each part to calculate the score. Also, for labels,
we assign weights with respect to different fields and types.
These weights are ajusted in order to get the best result.

5.1.2 Scoring
We calculated the relevance score score(d, q) between each

query q and each image d by using the following formula,

score(d, q) =
∑
e∈E

{we ·
∑
c∈C

wc · rel(dc, qe)} (1)

, where E denotes the set of “title,”“description,” and “nar-
rative,” and C denotes the set of image features shown in
Table 3. we is the weight parameter for controlling each
query’s part e, and wc plays the role of a switching function
for using each image feature c. dc denotes the set of labels
for each image feature c, and qe denotes the set of terms for
each query’s part e. rel(dc, qe) denotes the relevance value
between dc and qe and is separately defined by image fea-
ture c. When c is Concept or FDPA, rel(dc, qe) is calculated
as follows,

rel(dc, qe) =
∑
i∈dc

log10(1 + tfi,qe) · idfi (2)

, where tfi,qe denotes the term i frequency in query qe, and
idfi denotes the term i inversed document (image) frequency.

When c is ImageNet, Places, ImageNet-phone, or Places-
phone, rel(dc, qe) is calculated as follows,

rel(dc, qe) =
∑
i∈dc

log10(1 + tfi,qe) · imgscore(d, i) (3)

, where imgscore(d, i) denotes the image score between im-
age d and label i and is calculated by summing the deep
neural networks’ scores.

Ranking is done according to the relevance score calcu-
lated above.

5.1.3 Temporal filter
Some of the query topics have a rather strong time of day

constraint. For example “Eating lunch” only happens near
noon. Following [10], we adopt a temporal filter for such
query topics. We manually add a “temporal” part to each
query that indicates the time of day constraint.

After scoring, we examine whether each image satisfies the
time of day constraint of the topic being processed. Images
that do not satisfy this constraint are discarded from the
result.

5.2 Official results
We submitted the seven runs shown in Table 4 and re-

ceived official evaluated results for them. The “Official fea-
tures” and “Additional features” columns denote the image
features used for each method. The“Weight parameter” col-
umn represents we in formula (1), which is the weight of the
linear combination of the title score, description score, and
narrative score.
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Table 3: Image features for LSAT
Feature Description

Concept (Official) Image labels provided by organizers.
FDPA (Official) Bag of words of food, drink, place names, and activities associated with each image

ID.
ImageNet (Additional) Sum of the output scores of GoogLeNet and AlexNet trained on ImageNet applied to

each image.
Places (Additional) Sum of the output scores of GoogLeNet, AlexNet, VGG, and ResNet trained on

Places365 applied to each image.
ImageNet-phone (Additional) ImageNet scores calculated for eacch phone image associated with an image ID.
Places-phone (Additional) Places scores calculated for each phone images associated with an image ID.

The official evaluation results of each method are shown in
Table 5. PBGLSAT02, PBGLSAT07, PBGLSAT03 showed
the highest precision, recall and F1 score, respectively.

Figure 7 shows the results of each topic. We overview
the relationships between topics and our methods from the
perspective of F1 scores. For topics such as LSAT004 (Cof-
fee), LSAT011 (Cooking) and LSAT014 (Photo of the Sea),
the method using only additional features (PBGLSAT03)
showed high performance. For these topics, official concepts
of related images were insufficient, so we had to extract
features from images for accurate retrieval. For LSAT002
(Gardening) and LSAT006 (Graveyard), the method using
Places features (PBGLSAT03) showed good performance.
This is because it is necessary to capture a user’s loca-
tion to process these topics, and Places features include
a lot of information about a user’s places. The methods
using “Places” features also showed good performance for
topic LSAT016 (Greek Amphitheatre), although this topic
was not evaluated officially because of the difficulty. For
LSAT015 (Having Beers in a Bar), the features from cell-
phone images seemed to contribute to achieving good per-
formance (PBGLSAT005). We consider that this is caused
by the clear appearances of beers in cell-phone images. How-
ever, for some topics such as LSAT008 (Grocery Shopping),
information from phone images worked as noise and de-
graded the performance of retrieval.

6. LEST
The objective of the LAT subtask is to detect event seg-

ments from continual lifelog stream data. Each segment
needs to consist of a start and end image-ID. We mainly pre-
pared four types of approaches and submitted ten runs with
several hyper-parameters that were decided by using super-
vised data prepared by the authors. In common, our ap-
proaches detect the end image-ID list in each day. Each seg-
ment is generated by a start image-ID, which is detected by
detecting the end image-ID of the previous segment, and the
end image-ID is then identified. Therefore, our approaches
do not enumerate “untagged” segments.

6.1 Our approach

6.1.1 Similarity based approach
The simplest idea of event segmentation is to calculate co-

sine similarity between previous and next images and to enu-
merate image IDs with similarity under a threshold value.
Two images similarities can be to used for calculation us-
ing features such as concept labels, ImageNet, and Places.
As a result of our experimental evaluation, we employed co-
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Figure 7: LSAT evaluation scores for all topics

sine similarity by using GoogLeNet’s ImageNet scores and
identified image IDs with it under 0.04 as a segment image.

6.1.2 D-Star-based approach
D-star is a robust method of extracting stay regions as de-

scribed in Section 3. However, it focuses only on positions
and time and does not use images. We made two extensions
in order to use it for images. The first extension is to use
similarity-neighborhoods Nsim(pi) instead of neighborhoods
N(pi). Specifically, we changed the contents of the IF state-
ment in line 5 of Algorithm 1 to d(pi, pj) ≤ ϵ∧ sim(pi, pj) ≥
τ . Here, τ represents the similarity threshold, and function
sim(pi, pj) represents the similarity between the image of pi
and one of pj . We defined it as

sim(pi, pj) =

∑
k∈dC

min(pi,k, pj,k)× idfk∑
k∈dC

max(pi,k, pj,k)× idfk
, (4)

with reference to [13], where pi,k is an image feature calcu-
lated by a deep neural network. In this paper, we used Places
scores calculated by GoogLeNet with pi,k. The other exten-
sion regards duration-joinable core points. If each similarity-
neighborhood of two core points has the same point, they
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Table 4: LSAT submission runs of our team
Official features Additional features Weight parameters

Run ID Concept FDPA ImageNet Places ImageNet-phone Places-phone Title Desc. Narra.
PBGLSAT01 ✓ 1.00 0.50 0.25
PBGLSAT02 ✓ ✓ 1.00 0.50 0.25
PBGLSAT03 ✓ ✓ ✓ ✓ 1.00 0.50 0.25
PBGLSAT04 ✓ ✓ ✓ ✓ 1.00 0.50 0.25
PBGLSAT05 ✓ ✓ ✓ ✓ ✓ ✓ 1.00 0.50 0.25
PBGLSAT06 ✓ ✓ ✓ ✓ 1.00 0.50 0.25
PBGLSAT07 ✓ ✓ ✓ 1.00 1.00 1.00

Table 5: LSAT precision, recall, and F1 score aver-
aged over all topics. Highest score in each column
is shown in bold.

Run ID Precision Recall F1 score
PBGLSAT01 0.212 0.028 0.027
PBGLSAT02 0.278 0.081 0.038
PBGLSAT03 0.232 0.040 0.047
PBGLSAT04 0.187 0.077 0.040
PBGLSAT05 0.193 0.072 0.042
PBGLSAT06 0.215 0.068 0.043
PBGLSAT07 0.222 0.087 0.041

are duration-joinable. We set each parameter to q = 5, ϵ =
40m,mtime = 3min, Tstay = 5min, τ = 0.4 for user 1 and
q = 5, ϵ = 120m,mtime = 3min, Tstay = 5min, τ = 0.3 for
user 2.

6.1.3 T-test approach
The problem with similarity-based approaches is that

noisy images can be wrongly detected as segments because
the similarity between a previous image and next noisy im-
age results in a low value. To overcome this problem, we
propose a segmentation method composed from two steps;
first, we reduce dimensions with images by latent Dirich-
let allocation (LDA) to several latent topics [1] because the
number of features dimensions is too high. Second, we apply
Welch’s t-test to detect unnatural image groups against cur-
rent image segments by using latent topic probability in a
sliding window. Concretely, when the image index currently
being focused on is i (0 ≤ i < L) and the sliding window size
is w (> 0), we extract two segments {i, i− 1, . . . , i−w} and
{i, i+1, . . . , i+w} and calculate the Welch’s t-test value be-
tween the two segments for each latent topic number. When
a summation value among all topics is over the threshold
value, we detect the image ID i as the end of the segment.
From our experimental evaluation, we set the number of top-
ics in LDA to 10 and extracted 50 image IDs for each day
in descending order of the summation value of the above
process.

6.1.4 Gated CNN approach
For using various features together and checking the ben-

efit of each feature, we used a neural network with gated
convolutional neural network (CNN) module [2]. Figure 8
shows the network structure of our model. The gated CNN
module can obtain features from several pieces of time-step
data, and we can obtain the features of long-term time series
data by using the module iteratively. We estimated whether
an image is the end of a segment or not by inputting a total
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Figure 8: Gated CNN model for LEST. M indicates
number of features of each image. t indicates time
index of image.

of thirteen images centered a target image.
As preprocessing, we obtained features from images and

GPS trajectories by using the methods shown in Section 2,
Section 3, and Section 6.1.3. We set the similarity feature
of each image as a cosine similarity from a previous image
calculated from visual index vectors obtained as described
in Section 2 or LDA topics vectors obtained as described
in Section 6.1.3. After that, these features are encoded into
one vector by using two fully connected layers. The encoded
vectors are forwarded through a gated unit iteratively, and
finally, the network outputs whether the estimation target
image is the end of a segment or not after a fully connected
layer and a softmax layer. For optimization, our team ap-
plied Adam6 based on gradient calculated by using cross-
entropy error function. Our supervised data was imbalanced
because there were much fewer ends of segment images than
non-end images, thus, we picked three non-end images for
one end image as learning data. The number of mini-batch
sizes was 10, and the number of back-propagation iterations
was 200.

6.2 Official results
Table 6 shows the list of runs our team submitted for

the LEST task. We submitted six runs for the gated CNN
approach with difference features. PBG-LEST01 and 04–08
used the same model for both users, and the other runs used
different models. We set the parameters of each model, so
that its F1 score for supervised data was prepared by the
authors.

6We set hyperparameters to α = 0.00001, β1 = 0.9, β2 =
0.999, ϵ = 10−8.
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Feature
Same model
for
both users

Image similarity
based on
visual index

Image
LDA
topics

Image similarity
based on
LDA topics

Location
index

Run ID Model GPS Activity

PBG-LEST01 Image similarity ✓ ✓
PBG-LEST02 Sim D-Star ✓ ✓
PBG-LEST03 T-test ✓
PBG-LEST04 T-test + D-Star ✓ ✓
PBG-LEST05 Gated CNN ✓ ✓
PBG-LEST06 Gated CNN ✓ ✓ ✓
PBG-LEST07 Gated CNN ✓ ✓ ✓
PBG-LEST08 Gated CNN ✓ ✓ ✓ ✓ ✓
PBG-LEST09 Gated CNN ✓ ✓ ✓ ✓
PBG-LEST10 Gated CNN ✓ ✓ ✓ ✓ ✓ ✓

Table 6: LEST submission runs.

Table 7: LEST precision, recall, and F1 score aver-
aged over all days. Highest score in each column is
shown in bold.

Run ID Precision Recall F1 score
PBG-LEST01 0.901 0.352 0.494
PBG-LEST02 0.559 0.698 0.579
PBG-LEST03 0.768 0.453 0.550
PBG-LEST04 0.762 0.485 0.573
PBG-LEST05 0.848 0.421 0.547
PBG-LEST06 0.837 0.421 0.545
PBG-LEST07 0.855 0.406 0.535
PBG-LEST08 0.860 0.407 0.539
PBG-LEST09 0.846 0.436 0.561
PBG-LEST10 0.790 0.455 0.551
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Figure 9: LEST F1 score of four runs (Simplest
Method:01, D-Star based:02, T-test based:04, gated-
cnn: 09) in all days

Table 7 shows the evaluation of each run. Fig. 9 shows
the score for each day of four methods. PBG-LEST01,
which used the simplest image similarity based approach,
achieved the highest precision score; however, its recall score
was quite worse than other runs. This result indicates that
two images having low similarity became almost a segment
boundary; however, there is often a boundary without a
decrease in similarity. PBG-LEST02, which used the D-
Star based approach, achieved the highest recall score and
F1 score, and its F1 score was the highest among all the
runs of this subtask. PBG-LEST02 could detect a segment
boundary accurately by considering the movement states of
a user with his/her GPS data. For example, Fig. 9 shows
that the F1 score of PBG-LEST02 for the 09–13 of user 2
was quite higher than the other runs. One that day, user 2

went shopping in a shopping mall and did some work at his
house while moving. During these segments, user 2 kept on
moving; thus, segmentation based on image similarity was
difficult because image similarity was always low. In com-
parison, our D-Star based approach can consider a user’s
movement state with GPS data. As a result, the score for
LEST02 for that day was high. Regarding the T-test ap-
proach, the run with GPS data (PBG-LEST04) was more
accurate than that without GPS (PBG-LEST03). This re-
sult also shows the importance of considering location in-
formation. The gated CNN approach with the LDA topics
feature (PBG-LEST10) was less accurate than without that
feature (PBG-LEST09). This may be because the number
of dimensions of the LDA topics feature was too large for
supervised data; thus, our model was overfitting.

7. CONCLUSIONS
To solve the Lifelog Annotation (LAT), Lifelog Semantic

Access (LSAT), Lifelog Event Segmentation (LEST) sub-
tasks, we proposed effective models based on visual and
location indexing methods. From official results and our
qualitative evaluation, we demonstrated their outstanding
performance and clarified the effectiveness and limitation of
each data analyzing function and lifelog feature.

As future work, we will focus on classifying segments into
semantic categories by using a small set of labeled data.
Moreover, we will consider a novel DNN framework for rep-
resentation learning from multi-modal and time-series data.
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