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ABSTRACT 

This paper describes our approach for Actionable Knowledge 

Graph (AKG) task at NTCIR-13. Our ranking system scores each 

candidate property by combining semantic relevance to action and 

its document relevance in related entity text descriptions via a 

Dirichlet smoothing based language model. We employ 

supervised learning technique to improve performance by 

minimizing a simple position-sensitive loss function on our 

additional manually annotated training data from the dry run 

topics. Our best submission achieves NDCG@10 of 0.5753 and 

NDCG@20 of 0.7358 in the Actionable Knowledge Graph 

Generation (AKGG) subtask. 
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1. INTRODUCTION 
The objective of NTCIR-13 Actionable Knowledge Graph 

(AKG) Task [1] is to foster research on generating knowledge 

graphs that are optimized for facilitating users' actions (buying, 

booking, downloading, comparing, creating, etc.). The organizers 

set two subtasks: Action Mining (AM) subtask and Actionable 

Knowledge Graph Generation (AKGG) subtask.   

Our CUIS team participated in the AKGG subtask, which 

requires participants to rank entity properties. The query (input) 

can be ambiguous as in realistic search queries, and participants 

need to return the ranked list of relevant entity properties to create 

an actionable knowledge graph. Actions in the test queries will be 

taken from the outcomes of the Action Mining (AM) Subtask. 

Properties to be returned will be those defined as attributes of the 

entity type in schema.org vocabulary. 

Roughly speaking, a property consists of one or several words 

which describe a characteristic of an entity or an action. We 

assume that a word is more likely to be part of a property owned 

by an entity or an action if it occurs more frequently in related text 

descriptions of this entity or context of this action. Therefore, we 

model the relevance between a property and a query quadruplet 

(Query, Entity, Types, Action) by considering their semantic 

relevance to an action and document relevance to an entity.  

One challenge for AKGG is its lack of annotated data. To 

overcome this problem, we manually annotated ten queries from 

the dry run topics additionally. Together with five samples 

provided on the official website of AKGG, these annotated data 

become a small training set for training a one-parameter learning 

model. 

2. Our Approach 
Our ranking system is composed of three main components as 

follows: 

1. Preprocessing 

   ·Query preprocessing 

   ·Extracting candidate properties 

2. Indexing 

3. Ranking 

   ·Computation of semantic relevance 

   ·Computation of document relevance 

   ·Computation of relevance score 

 

2.1 Query Preprocessing and Extracting 

Candidate Properties 
For each query quadruplet (Query, Entity, Types, Action) 

from the input, a query string is generated by simply aggregating 

Query and Action. The string is then tokenized into a list of 

query terms after stop word removal and stemming. 

We extract all attributes listed on the webpage 

http://schema.org/TYPE as candidate properties for this query 

where TYPE iterates over each type name in Types. Since the 

naming convention of properties in schema.org is lower camel 

case (e.g. “startTime”, “mainEntityOfPage”), we use Python’s re 

package to split each property into a list of terms with regular 

expression [a-zA-Z][^A-Z]*. Stop words are filtered out and 

remaining terms are stemmed. 

Noting that a few properties in schema.org are partially or fully 

written in the form of an acronym (e.g. “hasPOS” is the acronym 

for “hasPointOfSale”, “sku” is the acronym for “StockKeeping 

Unit”). We manually change those properties to its original form. 
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2.2 Indexing 
As main source of text descriptions for entities, an English 

Wikipedia dump were automatically indexed to build a database 

for computing document relevance.  

A Wikipedia dump stores data in XML format. We can 

automatically extract articles with the help of genism, a Python 

package for Natural Language Processing [2]. The index contains 

two fields, “title” and “content”, which stores the title of a 

Wikipedia article and its textual content respectively.  

2.3 Ranking Entity Properties 

Semantic Relevance 
We score each property by considering its semantic relevance 

to the query. The relevance score is defined by the following 

formula: 

𝑠𝑐𝑜𝑟𝑒1(𝑞, 𝑎|𝐶) = ∑ log(max{𝑔(𝑡, 𝑡𝑎)}) , ∀ 𝑡𝑎 ∈ 𝑇𝑎

𝑡∈𝑇𝑞

 

where 𝑇𝑞 is the list of query terms, 𝑇𝑎 is the list of attribute terms, 

and 𝑔 is a similarity measure in the context of corpus 𝐶 for query 

term 𝑡  and attribute term 𝑡𝑎 . For AKGG subtask, we set 𝑔  to 

cosine similarity of word embedding representation of two terms. 

Document Relevance 
Besides semantic relevance, we also consider document 

relevance of a property given a query quadruplet, which is defined 

as logarithm of probability of property being relevant given the 

document related to the query. We apply a Dirichlet smoothing 

based language model [3] to model the relevance, which is 

defined by the following formulas: 

𝑠𝑐𝑜𝑟𝑒2(𝑞, 𝑎|𝐶) = ∑ log 𝑝(𝑡|𝑑𝑞)

𝑡∈𝑇𝑝

 

𝑝(𝑡|𝑑𝑞) =
𝑡𝑓(𝑡, 𝑑𝑞) + 𝜇𝑝(𝑡|𝐶)

|𝑑𝑞| + 𝜇
 

where 𝑑𝑞  is the document related to the query 𝑞 in the corpus 𝐶 

and 𝑡𝑓(𝑡, 𝑑𝑞) is the raw frequency of the term 𝑡 in the document. 

The prior parameter 𝜇 is set to the average document length in the 

whole collection of documents.  

Computation of Relevance Score 
We define the final relevance score as the weighted average of 

the previous mentioned relevance scores. 

𝑠𝑐𝑜𝑟𝑒(𝑞, 𝑎) = ∑ 𝜆𝑖𝑠𝑐𝑜𝑟𝑒1(𝑞, 𝑎|𝐶𝑖)

𝑚

𝑖=1

+ ∑ 𝛾𝑗

𝑛

𝑗=1

𝑠𝑐𝑜𝑟𝑒2(𝑞, 𝑎|𝐶′𝑗) 

where 𝐶𝑖  denotes the 𝑖 -th corpus for computing semantic 

relevance, 𝐶′𝑗  denotes the 𝑗 -th corpus for computing document 

relevance. 𝜆𝑖 and 𝛾𝑗  are parameters such that  ∑ 𝜆𝑖
𝑚
𝑖=1 + ∑ 𝛾𝑗

𝑛
𝑖=1 =

1. 

We employ supervised learning technique to determine the 

unknown parameters, the value of model parameter 𝜽 =
(𝜆1, … , 𝜆𝑚, 𝛾1, . . , 𝛾𝑛) was obtained by minimizing the following 

position-sensitive loss function: 

 

𝐿𝑜𝑠𝑠(𝑞, 𝐿𝑞|𝜽) =
1

|𝐿𝑞|
∑ (𝑅𝑎𝑛𝑘(𝑎|𝜽) − 𝐺𝑇𝑅𝑎𝑛𝑘(𝑎))

2

𝑎∈𝐿𝑞

 

where 𝑄  denotes the collection of all queries, 𝐿𝑞  denotes the 

ranked list of properties according to their relevance score. 

𝑅𝑎𝑛𝑘(𝑎|𝜽)  is the rank of property 𝑎  returned by our ranking 

system given parameter 𝜽 and 𝐺𝑇𝑅𝑎𝑛𝑘(𝑎) is the actual rank of 

property 𝑎 in the ground truth. 

  Due to the lack of annotated data, we only use English 

Wikipedia as the only corpus for computing both semantic 

relevance and document relevance. Then the model is therefore 

reduced into its one-parameter version since we have 𝜆1 + 𝛾1 = 1, 

which was trained by performing a grid search for the parameter 

𝜆1 to optimize the corresponding loss function. 

3. Experiments 

3.1 Experiment Setup 
We use the English Wikipedia dump on June 2017 as the main 

corpus. The CBOW based word embedding model is trained via 

gensim’s word2vec module with parameter (size=400, window=5, 

min_count=5). Articles extracted from the Wikipedia dump were 

indexed using Pylucene. For a given entity in the query quadruplet, 

a related Wikipedia article is defined as the document whose title 

is the same as the entity name. If such article does not exist, we 

simply use Lucene’s default BM25F search engine to retrieve the 

most relevant article in the title field given the entity name as the 

query.  

As stated by the organizers, the returned properties from 

submitted runs were pooled and given to annotators 

(CrowdFlower workers). The annotators (at least three annotators 

per each result) had to choose among the following options: 

L4: Perfect 

L3: Excellent 

L2: Good 

L1: Fair 

L0: Bad 

Normalized discounted cumulative gain (NDCG) and 

normalized expected reciprocal rank (NERR) are used as the 

evaluation metric and only top 20 properties returned by system 

were pooled and evaluated. 

3.2 Experiment Results 
We submitted three runs. Run 1 consists of the results returned 

by our previously mentioned ranking system and remove those 

unidentified attributes such as “gtin8” or “gtin12”. Run 2 is the 

unfiltered version of run 1. Run 3 was the bag-of-words version of 

Run 1, which removes the logarithm part in the computation of 

the semantic relevance and the document relevance and simply 

sums up the similarities or probabilities.  

As shown in Table 1, the column “Runs” shows the name of 

each run. The column “NDCG@10” and “NDCG@20” report 

normalized discounted cumulative gain at top-10 and top-20 for 

each run respectively. The column “NERR@10” and “NERR@20” 

report normalized expected reciprocal rank at top-10 and top-20 

for each run respectively. 
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3.3 Discussion 
Having examined the results in Table 1, we found that Run 1 

achieved best NDCG@10. It is improved by 1.3% compared to 

run 3. We also found that Run 3 obtained the best NERR@10 and 

NERR@20. It is improved by 1.8% compared to Run 1. Moreover, 

the results for each run are similar. This may be because our 

model does not take sequential information of queries into 

consideration even we model the relevance in the form of 

language model.  

3.4 Further Analysis 
We obtained ground truth for the formal run topics after the 

results had been released. We converted the ground truth into the 

standard TREC evaluation format and a subsequent parameter 

analysis was conducted using the previously mentioned one-

parameter model for Run 1. As shown in Figure 1, the NDCG@10 

and NDCG@20 remains almost unchanged when the parameter 

𝜆1 is less than 0.3. There is a slight increase for the results when 

𝜆1  is between 0.3 and 0.7. Significant increases in both 

NDCG@10 and NDCG@20 are observed when 𝜆1 is between 0.7 

and 0.9 and the performance reaches a peak when 𝜆1 is around 0.9. 

The figure also shows extreme situation concerning 𝜆1 equals to 0 

or 1, which imply that consideration of both semantic relevance 

and document relevance improves the overall performance of the 

ranking system.  

We also studied some good cases (NDCG@10 is larger than 0.8) 

and bad cases (NDCG@10 is less than 0.2) from the results. 

Roughly speaking, our ranking system generates good estimation 

if the Query and Action are specific enough. Take the query 

quadruplet (“Volkswagen Passat”, “Volkswagen Passat”, 

[Thing,Product,Vehicle,Car], “remove the door panel”) for an 

example. Our ranking system returns properties such as 

“productID”, “brand”, “material” and “vehicleConfiguration” 

because attribute terms of these properties occur frequently in the 

related entity description and the context of the action. On the 

other hand, our ranking system will generate biased estimation if 

the Query and Action are ambiguous. For example, our ranking 

system returns unreasonable properties such as “isPartOf”, 

“hasPart” and “name” for the quadruplet (“On the road”, “On the 

road”, [Thing,CreativeWork,Book], “follow”) because the system 

cannot recognize the phrase “On the road” in the query string as 

an entity about a film or a book. 

4. Conclusions 
We have presented the participation of our property ranking 

system in the NTCIR-13 AKG task. We develop a ranking system 

that scores each candidate property by combining its semantic 

relevance to query and action and its document relevance in 

related entity text descriptions. We use supervised learning 

technique to improve performance of our model. Experiments 

show that our system obtains reasonable results for the formal run 

topics. 

One of the future work is to exploit more information in the 

knowledge base such as DBpedia for the relevance measure. We 

also consider investigating the effectiveness of weight for each 

score. 

Table 1: Evaluation results for our submitted runs 

Runs 
NDCG 

@10 

NDCG 

@20 
NERR@10 NERR@20 

Run 1 0.5753 0.7358 0.6329 0.6352 

Run 2 0.5736 0.7349 0.6310 0.6333 

Run 3 0.5684 0.7322 0.6443 0.6474 

 

 

Figure 1: Effect of changing value of parameter 𝜆1  on the 

performance of the one-parameter ranking model.  
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