
CUIS Team for NTCIR-13 AKG Task
Xinshi Lin

Department of Systems Engineering

and Engineering Management

The Chinese University of Hong Kong

Hong Kong

xslin@se.cuhk.edu.hk

Wai Lam
Department of Systems Engineering

and Engineering Management

The Chinese University of Hong Kong

Hong Kong
wlam@se.cuhk.edu.hk

Shubham Sharma
Department of Computer Science and

Engineering

Indian Institute of Technology
Kharagpur

Kharagpur, India
shubhamsharma4060@gmail.c

om

ABSTRACT

This paper describes our approach for Actionable Knowledge

Graph (AKG) task at NTCIR-13. Our ranking system scores each

candidate property by combining semantic relevance to action and

its document relevance in related entity text descriptions via a

Dirichlet smoothing based language model. We employ

supervised learning technique to improve performance by

minimizing a simple position-sensitive loss function on our

additional manually annotated training data from the dry run

topics. Our best submission achieves NDCG@10 of 0.5753 and

NDCG@20 of 0.7358 in the Actionable Knowledge Graph

Generation (AKGG) subtask.

Keywords

NTCIR, Actionable Knowledge Graph, Property Ranking, Word

Embedding, Dirichlet Smoothing, Supervised Learning

Team Name

CUIS

Subtasks

Actionable Knowledge Graph Generation

External Resources Used

English Wikipedia

1. INTRODUCTION
The objective of NTCIR-13 Actionable Knowledge Graph

(AKG) Task [1] is to foster research on generating knowledge

graphs that are optimized for facilitating users' actions (buying,

booking, downloading, comparing, creating, etc.). The organizers

set two subtasks: Action Mining (AM) subtask and Actionable

Knowledge Graph Generation (AKGG) subtask.

Our CUIS team participated in the AKGG subtask, which

requires participants to rank entity properties. The query (input)

can be ambiguous as in realistic search queries, and participants

need to return the ranked list of relevant entity properties to create

an actionable knowledge graph. Actions in the test queries will be

taken from the outcomes of the Action Mining (AM) Subtask.

Properties to be returned will be those defined as attributes of the

entity type in schema.org vocabulary.

Roughly speaking, a property consists of one or several words

which describe a characteristic of an entity or an action. We

assume that a word is more likely to be part of a property owned

by an entity or an action if it occurs more frequently in related text

descriptions of this entity or context of this action. Therefore, we

model the relevance between a property and a query quadruplet

(Query, Entity, Types, Action) by considering their semantic

relevance to an action and document relevance to an entity.

One challenge for AKGG is its lack of annotated data. To

overcome this problem, we manually annotated ten queries from

the dry run topics additionally. Together with five samples

provided on the official website of AKGG, these annotated data

become a small training set for training a one-parameter learning

model.

2. Our Approach
Our ranking system is composed of three main components as

follows:

1. Preprocessing

 ·Query preprocessing

 ·Extracting candidate properties

2. Indexing

3. Ranking

 ·Computation of semantic relevance

 ·Computation of document relevance

 ·Computation of relevance score

2.1 Query Preprocessing and Extracting

Candidate Properties
For each query quadruplet (Query, Entity, Types, Action)

from the input, a query string is generated by simply aggregating

Query and Action. The string is then tokenized into a list of

query terms after stop word removal and stemming.

We extract all attributes listed on the webpage

http://schema.org/TYPE as candidate properties for this query

where TYPE iterates over each type name in Types. Since the

naming convention of properties in schema.org is lower camel

case (e.g. “startTime”, “mainEntityOfPage”), we use Python’s re

package to split each property into a list of terms with regular

expression [a-zA-Z][^A-Z]*. Stop words are filtered out and

remaining terms are stemmed.

Noting that a few properties in schema.org are partially or fully

written in the form of an acronym (e.g. “hasPOS” is the acronym

for “hasPointOfSale”, “sku” is the acronym for “StockKeeping

Unit”). We manually change those properties to its original form.

354

Proceedings of the 13th NTCIR Conference on Evaluation of Information Access Technologies, December 5-8, 2017 Tokyo Japan

2.2 Indexing
As main source of text descriptions for entities, an English

Wikipedia dump were automatically indexed to build a database

for computing document relevance.

A Wikipedia dump stores data in XML format. We can

automatically extract articles with the help of genism, a Python

package for Natural Language Processing [2]. The index contains

two fields, “title” and “content”, which stores the title of a

Wikipedia article and its textual content respectively.

2.3 Ranking Entity Properties

Semantic Relevance
We score each property by considering its semantic relevance

to the query. The relevance score is defined by the following

formula:

𝑠𝑐𝑜𝑟𝑒1(𝑞, 𝑎|𝐶) = ∑ log(max{𝑔(𝑡, 𝑡𝑎)}) , ∀ 𝑡𝑎 ∈ 𝑇𝑎

𝑡∈𝑇𝑞

where 𝑇𝑞 is the list of query terms, 𝑇𝑎 is the list of attribute terms,

and 𝑔 is a similarity measure in the context of corpus 𝐶 for query

term 𝑡 and attribute term 𝑡𝑎 . For AKGG subtask, we set 𝑔 to

cosine similarity of word embedding representation of two terms.

Document Relevance
Besides semantic relevance, we also consider document

relevance of a property given a query quadruplet, which is defined

as logarithm of probability of property being relevant given the

document related to the query. We apply a Dirichlet smoothing

based language model [3] to model the relevance, which is

defined by the following formulas:

𝑠𝑐𝑜𝑟𝑒2(𝑞, 𝑎|𝐶) = ∑ log 𝑝(𝑡|𝑑𝑞)

𝑡∈𝑇𝑝

𝑝(𝑡|𝑑𝑞) =
𝑡𝑓(𝑡, 𝑑𝑞) + 𝜇𝑝(𝑡|𝐶)

|𝑑𝑞| + 𝜇

where 𝑑𝑞 is the document related to the query 𝑞 in the corpus 𝐶

and 𝑡𝑓(𝑡, 𝑑𝑞) is the raw frequency of the term 𝑡 in the document.

The prior parameter 𝜇 is set to the average document length in the

whole collection of documents.

Computation of Relevance Score
We define the final relevance score as the weighted average of

the previous mentioned relevance scores.

𝑠𝑐𝑜𝑟𝑒(𝑞, 𝑎) = ∑ 𝜆𝑖𝑠𝑐𝑜𝑟𝑒1(𝑞, 𝑎|𝐶𝑖)

𝑚

𝑖=1

+ ∑ 𝛾𝑗

𝑛

𝑗=1

𝑠𝑐𝑜𝑟𝑒2(𝑞, 𝑎|𝐶′𝑗)

where 𝐶𝑖 denotes the 𝑖 -th corpus for computing semantic

relevance, 𝐶′𝑗 denotes the 𝑗 -th corpus for computing document

relevance. 𝜆𝑖 and 𝛾𝑗 are parameters such that ∑ 𝜆𝑖
𝑚
𝑖=1 + ∑ 𝛾𝑗

𝑛
𝑖=1 =

1.

We employ supervised learning technique to determine the

unknown parameters, the value of model parameter 𝜽 =
(𝜆1, … , 𝜆𝑚, 𝛾1, . . , 𝛾𝑛) was obtained by minimizing the following

position-sensitive loss function:

𝐿𝑜𝑠𝑠(𝑞, 𝐿𝑞|𝜽) =
1

|𝐿𝑞|
∑ (𝑅𝑎𝑛𝑘(𝑎|𝜽) − 𝐺𝑇𝑅𝑎𝑛𝑘(𝑎))

2

𝑎∈𝐿𝑞

where 𝑄 denotes the collection of all queries, 𝐿𝑞 denotes the

ranked list of properties according to their relevance score.

𝑅𝑎𝑛𝑘(𝑎|𝜽) is the rank of property 𝑎 returned by our ranking

system given parameter 𝜽 and 𝐺𝑇𝑅𝑎𝑛𝑘(𝑎) is the actual rank of

property 𝑎 in the ground truth.

 Due to the lack of annotated data, we only use English

Wikipedia as the only corpus for computing both semantic

relevance and document relevance. Then the model is therefore

reduced into its one-parameter version since we have 𝜆1 + 𝛾1 = 1,

which was trained by performing a grid search for the parameter

𝜆1 to optimize the corresponding loss function.

3. Experiments

3.1 Experiment Setup
We use the English Wikipedia dump on June 2017 as the main

corpus. The CBOW based word embedding model is trained via

gensim’s word2vec module with parameter (size=400, window=5,

min_count=5). Articles extracted from the Wikipedia dump were

indexed using Pylucene. For a given entity in the query quadruplet,

a related Wikipedia article is defined as the document whose title

is the same as the entity name. If such article does not exist, we

simply use Lucene’s default BM25F search engine to retrieve the

most relevant article in the title field given the entity name as the

query.

As stated by the organizers, the returned properties from

submitted runs were pooled and given to annotators

(CrowdFlower workers). The annotators (at least three annotators

per each result) had to choose among the following options:

L4: Perfect

L3: Excellent

L2: Good

L1: Fair

L0: Bad

Normalized discounted cumulative gain (NDCG) and

normalized expected reciprocal rank (NERR) are used as the

evaluation metric and only top 20 properties returned by system

were pooled and evaluated.

3.2 Experiment Results
We submitted three runs. Run 1 consists of the results returned

by our previously mentioned ranking system and remove those

unidentified attributes such as “gtin8” or “gtin12”. Run 2 is the

unfiltered version of run 1. Run 3 was the bag-of-words version of

Run 1, which removes the logarithm part in the computation of

the semantic relevance and the document relevance and simply

sums up the similarities or probabilities.

As shown in Table 1, the column “Runs” shows the name of

each run. The column “NDCG@10” and “NDCG@20” report

normalized discounted cumulative gain at top-10 and top-20 for

each run respectively. The column “NERR@10” and “NERR@20”

report normalized expected reciprocal rank at top-10 and top-20

for each run respectively.

355

Proceedings of the 13th NTCIR Conference on Evaluation of Information Access Technologies, December 5-8, 2017 Tokyo Japan

3.3 Discussion
Having examined the results in Table 1, we found that Run 1

achieved best NDCG@10. It is improved by 1.3% compared to

run 3. We also found that Run 3 obtained the best NERR@10 and

NERR@20. It is improved by 1.8% compared to Run 1. Moreover,

the results for each run are similar. This may be because our

model does not take sequential information of queries into

consideration even we model the relevance in the form of

language model.

3.4 Further Analysis
We obtained ground truth for the formal run topics after the

results had been released. We converted the ground truth into the

standard TREC evaluation format and a subsequent parameter

analysis was conducted using the previously mentioned one-

parameter model for Run 1. As shown in Figure 1, the NDCG@10

and NDCG@20 remains almost unchanged when the parameter

𝜆1 is less than 0.3. There is a slight increase for the results when

𝜆1 is between 0.3 and 0.7. Significant increases in both

NDCG@10 and NDCG@20 are observed when 𝜆1 is between 0.7

and 0.9 and the performance reaches a peak when 𝜆1 is around 0.9.

The figure also shows extreme situation concerning 𝜆1 equals to 0

or 1, which imply that consideration of both semantic relevance

and document relevance improves the overall performance of the

ranking system.

We also studied some good cases (NDCG@10 is larger than 0.8)

and bad cases (NDCG@10 is less than 0.2) from the results.

Roughly speaking, our ranking system generates good estimation

if the Query and Action are specific enough. Take the query

quadruplet (“Volkswagen Passat”, “Volkswagen Passat”,

[Thing,Product,Vehicle,Car], “remove the door panel”) for an

example. Our ranking system returns properties such as

“productID”, “brand”, “material” and “vehicleConfiguration”

because attribute terms of these properties occur frequently in the

related entity description and the context of the action. On the

other hand, our ranking system will generate biased estimation if

the Query and Action are ambiguous. For example, our ranking

system returns unreasonable properties such as “isPartOf”,

“hasPart” and “name” for the quadruplet (“On the road”, “On the

road”, [Thing,CreativeWork,Book], “follow”) because the system

cannot recognize the phrase “On the road” in the query string as

an entity about a film or a book.

4. Conclusions
We have presented the participation of our property ranking

system in the NTCIR-13 AKG task. We develop a ranking system

that scores each candidate property by combining its semantic

relevance to query and action and its document relevance in

related entity text descriptions. We use supervised learning

technique to improve performance of our model. Experiments

show that our system obtains reasonable results for the formal run

topics.

One of the future work is to exploit more information in the

knowledge base such as DBpedia for the relevance measure. We

also consider investigating the effectiveness of weight for each

score.

Table 1: Evaluation results for our submitted runs

Runs
NDCG

@10

NDCG

@20
NERR@10 NERR@20

Run 1 0.5753 0.7358 0.6329 0.6352

Run 2 0.5736 0.7349 0.6310 0.6333

Run 3 0.5684 0.7322 0.6443 0.6474

Figure 1: Effect of changing value of parameter 𝜆1 on the

performance of the one-parameter ranking model.

5. REFERENCES
[1] R. Blanco, H. Joho, A. Jatowt, H. Yu, S. Yamamoto.

Overview of ntcir-13 actionable knowledge graph (akg) task.

In Proceedings of the NTCIR-13 Conference, 2017.

[2] R. Rehurek, and P. Sojka. Software framework for topic

modelling with large corpora. In Proceedings of the LREC

2010 Workshop on New Challenges for NLP Frameworks,

2010.

[3] C. Zhai and J. Lafferty. A study of smoothing methods for

language models applied to ad hoc information retrieval. In

Proceedings of the 24th Annual International ACM SIGIR

Conference on Research and Development in Information

Retrieval, SIGIR '01, pages 334-342, New York, NY, USA,

2001. ACM.

356

Proceedings of the 13th NTCIR Conference on Evaluation of Information Access Technologies, December 5-8, 2017 Tokyo Japan

