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ABSTRACT 

This paper describes the rationale behind and results of five 
evaluation submissions to the NAILS (Neurally Augmented Image 
Labelling Strategies) challenge at the NTCIR-13 conference. Image 
triage is a time- and resource- intensive process for human labelers. 
Researchers have identified a potential P300-based BCI solution to 
alleviate the strain of manual labeling. The NAILS dataset was 
designed to capture the P300 signal over various image search 
activities and to act as a benchmark dataset for P300 detection 
methods. Here we describe approaches that utilize cross- and 
within-subject training using our in-house Convolutional Neural 
Network (CNN) EEGNet, and another state-of-the art event-
related-potential approach based on xDAWN spatial filtering 
combined with Information Geometry using Riemannian 
manifolds. We show improved performance with within-subject 
training, more data, and modifications to the EEGNet model, and 
briefly discuss the implications of using certain training data over 
others. 
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1. INTRODUCTION 
The proliferation of machine learning solutions for image 
processing, especially those based on deep neural networks 
(DNNs), is due to in part to their success on a wide range of image 
recognition tasks, outpacing their human counterparts in both speed 
and accuracy in limited cases [1]. However, in many tasks, ranging 
from accurately recognizing the same object types across a variety 
of different imaging modalities, to segmenting an image into 
critical objects, to evaluating semantic context in a scene, DNNs 
still fail to achieve parity with human performance. 

Although human image labelers are accurate, they are a slow and 
expensive solution to difficult large-scale image processing 
problems. A potentially faster way to leverage the human labelers' 
strengths is to monitor their visual cortex directly via Brain 
Computer Interface (BCI). Although BCIs are classically 
researched for clinical applications [2], researchers have developed 

BCIs specifically for this image triage problem, in addition to a 
growing number of applications for healthy users [3,4,5]. 

These image labeling BCIs are commonly based on the P300 neural 
response, which is a quick reflexive reaction the brain has to 
relevant visual stimuli [6]. It is a robust signal that can be elicited 
via rapid serial visual presentation (RSVP), where a large number 
of images are rapidly displayed to a user one-at-a-time. It can also 
be non-invasively recorded via electroencephalogram (EEG). This 
presents a unique opportunity to detect, at a rapid rate, images that 
are relevant even in the face of evolving task demands. Due to 
growing interest in RSVP-BCI for image labeling, the benchmark 
Neurally Augmented Image Labeling Strategies (NAILS) dataset 
was made available as part of a collaborative evaluation of P300 
detection methods over a range of image search tasks [7]. 

The detection of any neural event via BCI follows the same general 
process regardless of the application. The EEG signals must first be 
acquired from a human via sensors placed on the scalp. These 
signals are then pre-processed to improve the signal-to-noise ratio 
(SNR) prior to feature extraction, where distinguishing 
characteristics are pulled from the signal. These pre-processing and 
feature extraction methods often depend on the type of expected 
neural activity. These extracted features are passed off to a machine 
learning algorithm, often a binary classifier previously trained on 
similar features to discriminate between the neural activities of 
interest. The classifier decision is then sent to the application 
interface, where, if necessary, feedback is given to the user. When 
analyzing prerecorded data, such as the NAILS competition data, 
effort is generally focused on signal processing, feature extraction 
and classification.  

In this paper, we elaborate on the methods and motivations behind 
our five submissions to the NTCIR NAILS evaluation task. Our 
submissions focus on the feature extraction and classification 
portions of the BCI process, and are based primarily on our 
previous work on EEGNet [8], a generalized DNN architecture for 
EEG-based BCIs. We compare this model to an approach that uses 
xDAWN spatial filtering together with Riemannian Geometric 
analyses, an approach that has enjoyed success in several EEG 
classification challenges [9, 10, 11]. From our results over our five 
submissions, we discuss the effect of training set composition on 
final test set performance. 

2. MATERIALS AND METHODS 

2.1 EEG Data 
The NAILS dataset contains 32 channel EEG recordings, sampled 
at 50Hz, from 10 subjects performing a several 6 Hz RSVP target 
detection tasks. There are a total of 6 tasks with varying difficulty 
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(described in [7]) drawn from three popular image databases: 
Places 365[12], ImageNet[13] and VEDAI[14]. Each task was 
structured into 9 blocks, each block containing 180 images (9 
targets/171 standards), with self-paced breaks in between. In total, 
each subject was shown 116,640 images, and was instructed to 
count the occurrence of each target as defined by the task. As 
electrooculogram (EOG) can vary with class in target detection 
paradigms, the evaluation organizers removed epochs containing 
EOG by thresholding the peak-to-peak amplitude at 70 µV and 
confirmed their removal using ICA and wavelet analysis. For each 
subject and search task, 15/285 target/non-target trials were held 
out as the unlabeled test set for the evaluation. 

The NAILS dataset provided epochs of [-0.5, 1.5]s around image 
onset. We further subsampled this epoch to [0, 1]s, consistent with 
previous literature on P300 classification [15]. No further signal 
processing of the data was performed. 

2.2 Classification Models 

2.2.1 EEGNet & EEGNet2 
Deep Learning uses multiple layers of artificial neural networks to 
extract complex features from multidimensional datasets [16]. 
Convolutional Neural Networks (CNNs) are deep neural networks 
in which each neuron is a convolutional kernel, similar to those 
used in classic image processing methods. During learning, the 
weights in these kernels are optimized with respect to training loss, 
usually computed with the categorical cross-entropy loss, which is 
suitable for multi-class classification. A hold-out validation set is 
generally used to stop model training in order to prevent overfitting 
to the training set. CNNs typically use a combination of 
convolutional and pooling layers for feature extraction before a 
fully connected neural network is used for classification [17, 18]. 
CNNs have generated large performance improvements in the 
image processing community, as they are relatively robust to the 
rotational, translational, and minor distortion effects that 
accompany multiple instances of the same object.  

Previously, we developed EEGNet, a compact convolutional 
network architecture for EEG-based BCIs [8]. We showed that 
EEGNet enabled cross-subject transfer performance equal to or 
better than conventional approaches for several BCI paradigms Our 
previous work focused mainly on cross-subject (sometimes called 
subject-independent) classification, as this remains a difficult 
problem for developing practical BCI systems, especially for 
oscillatory-based BCIs [19, 20] where the signal-to-noise ratio 
(SNR) of the feature of interest can vary significantly across 
subjects. We have also developed an extension of EEGNet, called 
EEGNet2, which uses Filter Bank Blocks to facilitate localization 
of frequency-specific activity in the EEG signal.  

The basic architectures of EEGNet and EEGNet2 are given in 
Figures 1 and 2, respectively; here we provide a brief description 
of the models (the reader is referred to [8] for more details). Given 

an input EEG trial of size ܥ ൈ ܶ, for ܥ channels and ܶ time points, 
we first learn a set of  spatial filters, implemented as a convolution 
across the channel dimension (Layer 1), which primarily reduces 
the dimensionality of the data while potentially improving the SNR 
of the signal of interest. Layers 2 and 3 of the network use spatio-
temporal convolutions to learn correlations in time and across 
spatial filters. All convolutional layers used Dropout [21] and ܮଶ 
regularization to mitigate overfitting. These features are then used 
in a logistic regression to perform the classification. 

EEGNet2 is a variant of the EEGNet architecture, where we replace 
Layer 1 of EEGNet with multiple Filter Bank Blocks, each of which 
comprises one temporal convolution of length 20 samples plus two 

spatial convolutions. The temporal convolution allows the network 
to adaptively learn a frequency filter while the spatial convolutions 
help localize spatial activity along the scalp in frequency-specific 
bands. We learn 8 of these blocks in total. This operation closely 
resembles that of the Filter-Bank Common Spatial Pattern (FBCSP) 
[22], an algorithm specializing in classification in oscillatory-based 
BCIs. The rest of the network remains the same as EEGNet. 

2.2.2 xDAWN Spatial Filtering + Riemannian 
Geometry 
We also investigated using an approach described by Alexandre 
Barachant, which won the Kaggle BCI Challenge 
(https://github.com/alexandrebarachant/bci-challenge-ner-2015). 
This approach uses a combination of xDAWN spatial filtering [23], 
Information Geometry using Riemannian manifolds [9,10,11], 
electrode selection, and ܮଵ feature regularization. This model will 
be referred to as xDAWN + RG for the rest of the manuscript.  

2.3 NAILS Submissions 
Here we describe the five submissions we made for the NAILS 
competition. A summary of the approaches, as well as the data 
partitioning procedures per submission, can be found in Table 1.  

 
Figure 1. EEGNet architecture: Layer 1 learns spatial 

convolutions kernels while Layers 2 and 3 learn spatiotemporal 
convolution kernels. 

 
Figure 2. EEGNet2 architecture, replacing the spatial filter layer in 

EEGNet with a Filter Bank Block. 

Table 1. Summary of labeled training data partitioning across 
submissions.  

  Labeled Training Data 

 Classification 
Type 

Train 
Set 

Validation 
Set 

CV Test 
Set* 

S
u

b
m

is
si

on
 

1 Across 5 subj. 4 subj. 1 subj. 

2 Within 1/3 1/3 1/3 

3 Within 1/3 1/3 1/3 

4 Within 2/3 1/3 N/A 

5 Within 4/5 1/5 N/A 

390

Proceedings of the 13th NTCIR Conference on Evaluation of Information Access Technologies, December 5-8, 2017 Tokyo Japan



Please note that for the first three submissions, we hold out a CV 
(cross validation) test set within the labeled training data. In Table 
2, the Validation BAs for these three submissions are computed on 
this CV Test set. 

2.3.1 Submission 1: Cross-Subject EEGNet 
Our first submission uses EEGNet trained in a cross-subject 
fashion: We select at random (from the labeled training data), 5 
subjects to be the training set, 4 subjects to be the validation set, 
and 1 subject to be the CV test set. This process was repeated 100 
times, creating 100 different “folds” of the data. Note that, due to 
random sampling effects, not all subjects were the CV test set an 
equal number of times. The EEGNet model configuration used 8 
spatial filters in the first layer, followed by 4 filters of size (2, 12) 
and (4, 4) for Layers 2 and 3, respectively. We then used an 
ensemble voting procedure to make the final prediction on the 
unlabeled test set by finding a threshold such that each subject had 
on average around 90 predicted targets. The EEGNet model was 
trained until minimum cross-entropy loss was achieved on the 
validation set.. Because of the severe class imbalance in the data 
(only 5% of which are the target class), we trained the EEGNet 
model with a class weight of 50 to 1 for the target class, essentially 
assigning higher loss when a target was misclassified. 

Though the ensemble is effectively trained on all subjects’ training 
data, the validation BA in Table 2 is computed on the CV test set, 
which is an entirely separate subject. Thus, the cross-validation 
approach is representative of a “calibration-free” or subject-
independent BCI [19, 20]. This approach represents the situation 
where knowledge of the test subject may not be known a priori; the 
classification approach used should be able to learn a general 
representation of the signal from other subjects.  

2.3.2 Submission 2: Within-Subject EEGNet2 
Since we know the subject IDs for each sample in the test set, it is 
possible to train a within-subject classification model for this task. 
Although this model has less data to train on, it can exploit subject-
specific EEG dynamics. We also used EEGNet2 here, as this model 
might better exploit within-subject EEG frequency bands for 
improved classification. We used filters of size (4, 4) with (2, 2) 
strides for Layers 2 and 3, respectively. Similar to Submission 1, 
EEGNet2 was trained by minimizing the cross-entropy loss 
function on the validation set, using a class weight of 20 to 1 for the 
target class.  

The main challenge here is determining the amount of data that is 
required to train and validate the EEGNet2 model. For this 
submission we used a cross-validation procedure consisting of 

selecting 1/3 of each subjects’ data at random to form the training, 
validation and CV testing sets, respectively. We repeated this 
procedure approximately 10 times per subject, and used the run 
which produced the highest cross-validation BA (computed on the 
CV test set) to make a prediction on that subject’s portion of the 
unlabeled test set. 

2.3.3 Submission 3: Within-Subject xDAWN + RG 
This submission used the same data partitioning as Submission 2, 
but instead uses xDAWN + RG for the classification model. We 
trained 4 xDAWN filters per class, and subsampled the 32 channels 
to 12 channels using the Riemannian metric (see Section 2.2.2 for 
more details). This submission was used to compare and contrast 
the performance of Deep Learning-based models (EEGNet and 
EEGNet2) with more traditional BCI classification algorithms. The 
validation BA in Table 2 is from the CV test set with the highest 
BA. We used this run to make a prediction on that subject’s portion 
of the unlabeled test set. 

2.3.4 Submission 4: Within-Subject EEGNet2 with 
2/3 Training Data 
This submission is the same as that of Submission 2, but we 
increased the training set size to 2/3 of the available data per 
subject. We trained the model to minimize cross-entropy loss but 
logged the validation sets’ Balanced Accuracy (BA) at each 
training iteration. We then saved the model with the highest 
validation set BA.  

2.3.5 Submission 5: Within-Subject EEGNet2 with 
4/5 Training Data  
This submission is the same as Submission 4, but we further 
increased the training set size to 4/5 of the available data per 
subject, and validating on the remaining 1/5.  

3. RESULTS 
We present our results in Balanced Accuracy (BA), shown in Table 
2. For submission 1, we see variation across subjects, with subject 
1 performing the worst (0.680 BA) and subject 5 performing the 
best (0.842 BA). The internal Validation BA achieved a BA of 
0.782. When the ensemble of classifiers was applied to the test set, 
the performance fell 0.010 points to 0.772 BA.  

The second and third submissions were used to test potential 
performance differences between EEGNet2 and xDAWN + RG. 
We observed minimal differences between the two approaches, 
both in Validation BA (0.867 and 0.880 for EEGNet2 and 
xDAWN + RG, respectively) and in Test BA (0.846 and 0.853, 

Table 2. Maximum BA observed across all folds per subject for each submission. The average validation BA column also has numbers in 
parentheses, which denote one standard error of the mean. Δ denotes the difference between the Validation BA and the Test BA. The 5th 

submission, with a Test BA of 0.884, was the winning solution to the NAILS task.  

 
Train 

Set 

Validation BA Test 
BA 

ઢ 
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Average  

S
u

b
m

is
si

on
 

1 Across 0.680  0.819  0.815  0.795 0.842 0.754 0.813 0.789 0.735 0.776  
0.782 

(0.015) 
0.772 0.010 

2 Within 0.779  0.885  0.875 0.887 0.926 0.838 0.902 0.880 0.837 0.856 
0.867 

(0.013) 
0.846 0.021 

3 Within 0.783 0.945 0.858 0.914 0.915 0.854 0.911 0.913 0.853 0.852 
0.880 

(0.015) 
0.853 0.027 

4 Within 0.829 0.951 0.943 0.918 0.967 0.890 0.944 0.918 0.891 0.883 
0.913 

(0.013) 
0.872 0.041 

5 Within 0.829 0.965 0.940 0.932 0.964 0.891 0.954 0.941 0.898 0.901 0.921 
(0.013) 0.884 0.037 
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respectively). These submissions also strongly suggested that our 
cross-validation procedure closely approximated the test set, with 
relatively minor differences in performance observed (Δ=0.021 
and 0.027).  

For our fourth submission, we increased the training set size to 2/3 
of the available data per subject at the expense of having a CV test 
set. We observed improved performance in the Validation BA 
(0.913) and test BA (0.872). Although these are improvements 
upon our previous approaches, the discrepancies in BA between 
the validation and test sets grew to 0.041, suggesting that our 
approach was over-fitting more than in previous approaches.  

The fifth and final approach, which further increased the training 
set size to 4/5 of the available data per subject, improves upon 
previous attempts, achieving a validation BA of 0.921 and a test 
BA of 0.8838, and was the winning submission to the NAILS 
task. 

4. DISCUSSION 
Although the results increased with each submission, the 
discrepancy between the validation BA and test BA tended to grow. 
This could be for a few reasons: first, the validation set size 
decreased across the submissions in order to maximize training set 
size. This would have caused the validation predictions to be less 
stable across learning, yielding a more over-fit stopping point. We 
also notice that it is greater for the within-subject trained models 
than for the cross subject trained models. This is potentially due to 
the overlap between trials that exists in the training set: since the 
presentation is at 6 Hz, trials have the capacity to overlap up to 
0.83s with each other. Since the validation set was randomly 
sampled from the training data, there could have been trials with 
significant overlap across the training and validation folds. 

When we switched to within-subject training we saw improvements 
in BA. We did not initially train within subjects because we 
assumed more data would outweigh the benefits of more specific 
data when training effective DL models. However, we see that 
between approaches 1 and 2 that more data is not necessarily better: 
data that better matches (i.e. within subject data) outperformed the 
models trained on additional subjects’ data. We found in 
independent tests that various methods of augmenting the within-
subject data with other subjects did not necessarily improve results, 
indicating that there is a tradeoff between data size and data 
‘content’. 

In our previous and current work with our in-house datasets, we've 
seen that this issue of training set content holds true for within- vs. 
cross-task training as well: within-task training outperforms cross-
task transfer in target detection BCI paradigms [24,25]. Although 
our previous work uses experiments with greater variations in 
presentation rate, subject response, and gaze settings, it is possible 
that tuning to task in the NAILS dataset could generate further 
improvements. Thus, it should be explored. We did not explore 
task-specific models in this paper for three reasons:  1) we assumed, 
as in the within-subjects case, that the benefit of more training data 
would override the benefit of more specific training data, 2) training 
within-subject and cross-task would present a challenge for DL 
model validation and early stopping, and 3) we continued to see 
improvements in the within-subject cross-task approach. 

5. CONCLUSION 
In conclusion, we applied an ensemble of EEGNet convolutional 
neural networks to the NAILS data for feature extraction and 
classification, resulting in a 0.8838 BA on the test set. The NAILS 
task is one of the first BCI competitions for image analysis, which 

is an extremely valuable contribution to the field, and we are 
grateful for the opportunity to participate. We wish to thank the 
organizers of the 2017 NAILS competition for their efforts and 
dedication, which have allowed us to showcase our research.  

We believe that the structure of the majority of current BCI 
competitions, where offline feature extraction and classification 
approaches are applied to preprocessed data, omits the difficulty of 
evaluating the approach in an online system. The structure of 
current competitions privileges computationally intensive methods 
that can often overfit to specific data sets, and in some cases, can 
accidentally violate the causal nature of the EEG data (by using 
future data to make a prediction in the past). Thus, we believe that 
future BCI competitions should have an online validation 
component, although we realize that this can be a significant burden 
for competition organizers.  

We note that research on RSVP-based BCI for image analysis 
stretches back well over a decade, and there has been significant 
progress in that time. With the advent of image-based DNN 
approaches (and their ability to perform at or even above human-
level labeling performance, see [1]) there is a belief that image 
labeling BCIs are no longer relevant. However, we believe that this 
result is only possible when large labeled image datasets are 
collected and made available [12,13], and thus it remains unclear 
how to use these approaches when limited labeled data is available 
and/or when subject-matter expertise is required to analyze the 
image (i.e.: satellite and medical imagery). We believe that a multi-
agent human-computer interface (HCI) for image analysis can 
potentially be used in these scenarios [26].  
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