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Here we use length of (g, a) as smoothing parameter. P,,(w|C) 1s the distribution of
word w 1n the collection C. And P(w|(q, a), query) derived based on Language
Model, Translation Model and Topic Model:

Community Question Answering (CQA) services have become a important
alternative for online information access, such as Yahoo! Answers and Quora.

Question retrieval is an important task for CQA services. The task can be simply P(w | (q,a), query ) = u,P,,(w | q) + p, Y (PU(W )P (t ] q))
defined as follows: given a query and a set of questions with their answers, return a teq
ranked list of questions. ) (Pw(W ¢, query )P, (¢ q))+ w L, (| a)
teq
A major challenge of the tE.lSk 1s the lexical gap, 1.e., the word mismatch between Here we use u;, i,, 1t; and 1, balance the impact of each component and g, + 14, + 1
queries and candidate questions. For example, “Where can I listen to rock for free + = 1.

online?” and “I need a music sharing website.” probably have the same meaning
but in different word forms.
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improvements are very small. We think that’s because the query 1s too short. In this
task, each query contains 1 or 2 words. The topic information of queries are too
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a) 1s a sample of a multinomial distribution of terms [2, 3]. (g, a) are ranked
according to the probability they generate the guery. We estimate this probability by
interpolating the term distribution 1n the (g, a) with the term distribution in the

collection: Contacts

organizers of OpenLive(Q) task.

Plauery|(g,a)) = H (g,a) Pr | (g, a) ,query) 4 1 PG 0) 1. Ming Chen, erlangera@whut.edu.cn

wequery (g,a) | +1 (g,a) | +1 2. Lin L1, cathylilin@whut.edu.cn

N 2N /




