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Summary

• Integrate all tasks into a single neural network.
• Two neural networks–HAN and CharCNN–with

multi-language learning are combined.
• Ensemble all models with Bagging.
• The ensemble using the NLL and hinge loss

produced the best results with 88.0% accuracy.
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• Our team tackled the MedWeb using neural networks.

1. Resampling: Create Bootstrap samples.
2. Model: Learn Neural Network with 6 settings.
3. Ensemble: Average over the model outputs.

Features representation

≈

Bi-Encode

Attend

ID ID ID ID ID ID

Embedding

Dense

ID ID ID ID ID ID

Convolution/BN

Convolution/BN/

k-MaxPooling…

k-MaxPooling

• In this paper, we utilized two neural network models
based on both Hierarchical Attention Network
(HAN) [1] and Character-level Convolutional
Networks (CharCNN) [2].

• The goal is to encode the tweet sentence into a fixed
size sentence vector s, which will eventually undergo
multi-label classification.

Hierarchical Attention Network

• Given a sentence with words wt where T is the total
number of words in the sentence and embed these
words through the embedding matrix We, xt =Wewt.

• Given the encode bidirectional GRU to encode the
tweet sequence ht = BiGRU (xt) [3].

• Compose the tweet vector s with attention
mechanism [4]:

ut = tanh (Wwht+ bw) ,

αt =
exp(u>t uw)∑
t exp(u>t uw)

,

s=
∑

t
αtht

Character-level Convolutional Network

• In contrast to the HAN, the CharCNN is the deep
learning method to compose sentence vector from
character sequences.

• To accelerate learning procedure, we adapt Batch
Normalization [5].

• We define the above procedure as CNN and iterate
CNN three times:

v1,1:Tv,1
= CNN(c1:Tc

)
v2,1:Tv,2

= CNN(v1,1:Tv,1
)

v3,1:Tv,3
= CNN(v2,1:Tv,2

)

• Compose the sentence vector s the linear
transformation for hidden features v3 to compose the
sentence vector:

s=Wvv3,1:Tv,3
+ bv.

Integrating all three tasks
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• Although we generally need to learn the neural
network model for each task, the MedWeb task
consists of the same label set for the different
language datasets.

Language Independent learning

• For each task, we build one neural network model.

Multi-language learning

• Since the English and Chinese tweets are translated
from original Japanese tweets, all languages use the
same tweet and the same label per line.

• Thus, we represent the three tweets of each language
in a single vector for multi-language learning:

sMulti = [sja; sen; szh]

Multi-label learning
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Multi-Label

• Since the task is to perform a multi-label classification
of 8 diseases or symptoms per tweet, there are two
ways to approach this:

Label-Independent learning

• Build the classifier for each label, respectively:

ŷc = w>c s+ b′c ∈ R

Multi-label learning

• Build one classifier for the 8 labels, simultaneously:

ŷ =Wcs+ bc ∈ R8

• The dimension of outputs ŷ equals 8 because each
sentence has 8 binary labels: Influenza, Cold, Hay Fever,
Diarrhea, Headache, Cough, Fever and Runny nose.

Loss functions

• To optimize the models, we experimented following
three loss functions:

Negative Log-Likelihood

LNLL =
N∑
i

8∑
c=1

ln(1+ exp(−yc,iŷc,i))

Hinge

LHinge =
N∑
i

8∑
c=1

max(0, 1− yc,iŷc,i)

Hinge-Square

LHinge-sq =
N∑
i

8∑
c=1

max(0,1− yc,iŷc,i)
2

Bagging ensemble

• Bagging is the ensemble strategy that averages over
the outputs learned by resampled dataset.

• We made 20 resampled datasets for this purpose and
use each dataset for training the HAN and CharCNN
against the 3 loss functions, resulting in 6 methods.

Experiments: Label-independent v.s. Multi-label

Table 1: Comparison between label-independent or multi-label

Target
Exact match accuracy

Label-Independent Multi-Label
Influenza 0.977 0.988
Diarrhea 0.973 0.979
Hay Fever 0.971 0.975
Cough 0.988 0.991
Headache 0.979 0.981
Fever 0.931 0.929
Runny nose 0.948 0.952
Cold 0.944 0.965
Exact match 0.767 0.823

Experiments: Multi-language and Model config

Table 2: Language Independent Learning vs. Multi-language Learning

- This table shows that multi-language learning is more accurate than

language independent learning in any of the languages and classifiers for

this dataset. We also append the other team’s results for each language,

AKBL-ja-3, UE-en-1, TUA1-zh-3 for benchmark, respectively.

Setting Exact match accuracy

Encode Loss
Language-Independent Multi-Language

ja en zh Single Ensemble

Attention
NLL 0.823 0.791 0.789 0.823 0.841

Hinge 0.823 0.795 0.809 0.844 0.841
Hinge-sq 0.825 0.786 0.794 0.822 0.844

CharCNN
NLL 0.800 0.718 0.808 0.831 0.848

Hinge 0.797 0.686 0.806 0.811 0.869
Hinge-sq 0.772 0.670 0.784 0.811 0.866

Benchmark 0.805 0.789 0.786 - -

Experiments: Ensemble results

Table 3: This table shows the results of our ensembles. Among the 9

ensembles we created, we submitted the last 3–particularly the ensembles

using both HAN and CharCNN. Of the three, the ensemble with loss

functions NLL and Hinge produced the highest accuracy: 88.0%.

Ensemble strategy
Exact match

Encode Loss

Attention
NLL × Hinge × Hinge-sq 0.842
NLL × Hinge 0.836
NLL × Hinge-sq 0.844

CNN
NLL × Hinge × Hinge-sq 0.861
NLL × Hinge 0.861
NLL × Hinge-sq 0.859

Attention × CNN
NLL × Hinge × Hinge-sq 0.877
NLL × Hinge 0.880
NLL × Hinge-sq 0.878
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