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ABSTRACT
This paper describes how we tackled the Medical Natural
Language Processing for Web Document (MedWeb) task as
participants of NTCIR13. We utilized multi-language learn-
ing to integrate the multi-language inputs of the task into a
single neural network. We then built two neural networks–a
hierarchical attention network (HAN) and a deep charac-
ter convolutional neural network (CharCNN)–with multi-
language learning and combined both outputs to utilize the
advantages of each neural network. This combination was
carried out using ensembling, specifically the method of bag-
ging. We found that the ensemble using the loss functions
NLL and hinge produced the best results with 88.0% accu-
racy.

Team Name
NAIST

Subtasks
MedWeb (Japanese, English, Chinese)

Keywords
MedWeb, NTCIR13, Sentence Classification, Multi-label,
Disease related tweets.

1. INTRODUCTION
The NTCIR13 Medical Natural Language Processing for
Web Document (MedWeb) task challenges participants to
classify Twitter-like messages written in different languages
(namely Japanese, English, and Chinese). In particular, the
participants were asked to perform a multi-label classifica-
tion of 8 diseases or symptoms for each tweet. Further de-
tails of this task can be found in the NTCIR MedWeb web-
site and the NTCIR-13 Medweb task overview paper [11].

It was given that the English and Chinese datasets were
generated from the Japanese dataset by translating Japanese
sentences to these languages. In light of this data generation,
we found that all of the language datasets have the same
label for corresponding sentences.

From this observation, we propose a neural network that
could handle multi-language inputs with the same labels.
Further, we explore ensemble strategies that are suitable for
the MedWeb task.

Our results were then compared to the 2nd place teams
for each language, AKBL-ja-3, UE-en-1, and TUA1-zh-3–
revealing that most of our experiments are superior to the
benchmarks’ result. Using exact match, we found that the
ensemble of the attention network and the character-level
convolutional network using the negative log likelihood (NLL)
and hinge loss functions produced the best results with 88.0%
accuracy.

2. METHOD
Our modeling strategies are summarized in Figure 1. Our

team tackled the MedWeb task using a neural network clas-
sifier.

We first introduce two neural network models for text
classification described in Section 2.1. We then outline our
multi-label strategy in Section 2.2 We show the learning
strategies for each neural model in Section 2.3 especially
since the selection of the loss function had a significant ef-
fect on model robustness. Finally, we present the ensemble
method called bagging in Section 2.4.

2.1 Tweet Encoding Methods
In this paper, we utilized two neural network models based

on both Hierarchical Attention Network (HAN) [12] and
Character-level Convolutional Networks (CharCNN) [13]. The
goal is to encode the tweet sentence into a fixed size sentence
vector s, which will eventually undergo multi-label classifi-
cation.
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Figure 1: Overview: To make a more robust classifier, we created 20 bootstrap dataset samples, instead of a single sample, to
be fed to our models. We then generated 6 methods (with respect to two neural networks and three loss functions) for each
bootstrap sample–which amounts up as 120 model combinations. Finally, we merged the 120 outputs of these models into a
single result by taking the average of these outputs.

Bi-Encode

Attend

ID ID ID ID ID ID

Embedding

(a) One step Attention Net-
work

≈

Dense

ID ID ID ID ID ID

Convolution/BN

Convolution/BN/

k-MaxPooling…

k-MaxPooling

(b) Character-level convolu-
tional neural network

Figure 2: This figure represents the neural network models
we used for this task. The first is a simplified variation of the
hierarchical attention network while the second is a variation
of the convolutional neural network.

2.1.1 One Step Hierarchical Attention Network
Our approach includes using a one step hierarchical atten-

tion neural network classifier (see Figure 2a). An attention
network processes data sequentially rather than all at once.
The original model, HAN, assumes the hierarchical struc-
ture from word to sentence to document. However, for the
dataset of this task, there is only one step that is relevant–
word to tweet (sentence). For this reason, we use a one step
hierarchical attention network.

For HAN, we first have to embed the word of a tweet.
In a tweet, we are given a sentence with words wt where
T is the total number of words in the sentence. We embed
these words through the embedding matrix We, xt = Wewt

and perform a bidirectional GRU [5]. The forward GRU
−→
f

reads the words in the sentence from the first word w1 to the

last word wT while the backward GRU
←−
f reads the words

in the sentence from last word wT to first word w1.

xt = Wewt, t ∈ [1, T ]
−→
h t =

−−−→
GRU (xt) , t ∈ [1, T ] ,

←−
h t =

←−−−
GRU (xt) , t ∈ [T, 1] ,

We then concatenate
−→
h t and

←−
h t to get ht which serves

as the annotation for the word wt. This means that ht is
a summary of the information of the tweet with respect to
the word wt.

Next, we employ an attention mechanism [1] to represent
the sentence vector s through combining ht:

ut = tanh (Wwht + bw)

αt =
exp(u>t uw)∑
t exp(u>t uw)

s =
∑
t

αtht

2.1.2 Character-level Convolutional Network with Batch
Normalization

Another sentence encoder that we used is the character-
level convolutional network (CharCNN) based on the Zhang
et al’s model[13] (see Figure 2b).

In contrast to the word embedding from HAN, CharCNN
focuses more on characters than words. Given a tweet, there
is a one-hot vector of character ct representing the tth char-
acter of a tweet with length Tc. If we let the concatenation
operator be ⊕, then a sentence of length Tc can be repre-
sented as

c1:n = c1 ⊕ c2 ⊕ · · · ⊕ cTc .

In general, let ci:j refer to the concatenation of characters
ci ⊕ ci+1 ⊕ · · · ⊕ cj . A convolution is defined as a filter Wc

with window size r to produce hidden features z1:

zi,1 = Relu(Wc,1ci:i+r + b1).

To accelerate the learning procedure, we apply batch nor-
malization (BN) [6] for hidden features z1:

ẑi,1 = γ1

(
zi,1 − EB[zi,1]√

VB[zi,1]

)
+ β.
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Figure 3: This depicts the difference between language-
independent learning and multi-language learning.

where B indicates the set of mini-batch instances.
A max-pooling layer of size k is then applied to extract

the valuable features from hidden features ẑ1,1:Tc−r+1:

v1,j = max (ẑ1,j:j+k)

for every j ∈ {k × i : i ≤ bTc − r + 1/kc}.
We define the above procedure as a convolution operation

denoted by Cnn(·). We iterate the convolution operation
three times:

v1,1:Tv,1 = Cnn(c1:Tc)

v2,1:Tv,2 = Cnn(v1,1:Tv,1)

v3,1:Tv,3 = Cnn(v2,1:Tv,2)

where Tv,1 = bTc/kc, Tv,2 = bTv,1/kc, Tv,3 = bTv,2/kc.
We then apply the linear transformation for hidden fea-

tures v3 to compose the sentence vector s:

s = Wvv3 + bv.

2.1.3 Multi-Language Learning
As mentioned in Section 1, our approach integrates multi-

language input into a single neural network. Although we
generally need to learn the neural network model for each
task, the MedWeb task consists of the same label set for the
different language datasets. This results in a simultaneous
learning of the Japanese, English, and Chinese dataset (see
Figure 3). Multi-language inputs are able to use richer in-
formation of sentences as it combines these three languages.

A general learning strategy that we call Language inde-
pendent learning involves learning each tweet per language.
We compare this strategy against multi-language learning.
Multi-language learning involves learning using multiple lan-
guages of the same label. Since the English and Chinese
tweets are translated from original Japanese tweets, all lan-
guages use the same tweet and the same label per line.
Specifically, the Japanese, English, and Chinese tweets in
the n-th line of the dataset have the same label. In light of
this observation, we propose that multi-language learning is
more suitable for this task.

Since we found that corresponding tweets represent the
same content but vary in language, a single sentence vector
can represent these tweets. Thus, we represent the three
tweets of each language in a single vector for multi-language
learning:

sMulti = [sja; sen; szh]

where [·; ·] represents vector concatenation.

2.2 Multi-Label Learning

Label-Independent

SFlu SCol SHay SDia SHea SCou SFev SRun

yFlu yCol yHay yDia yHea yCou yFev yRun

S

yFlu yCol yHay yDia yHea yCou yFev yRun

Multi-Label

Figure 4: This shows the difference between label-
independent learning and multi-label learning.

Since the task is to perform a multi-label classification
of 8 diseases or symptoms per tweet, there are two ways
to approach this (see Figure 4). The first is to build the
classifier for each label, respectively, which we call Label-
independent learning.

ŷc = w>c s+ b′c ∈ R

Another approach is to classify the tweet for the 8 labels
simultaneously. This is called multi-label learning [10]:

ŷ = Wcs+ bc ∈ R8

The dimension of outputs ŷ equals 8 because each sentence
has 8 binary labels: Influenza, Cold, Hay Fever, Diarrhea,
Headache, Cough, Fever and Runny nose.

The advantages of multi-label learning is that the model
could share the same sentence vector s of tweets for all la-
bels. In the multi-label setting, the sentence vector s could
capture the symptom co-occurrence pattens.

To determine the predicted labels for each symptom c, we
apply the sign function for each output as follows:

sgn(ŷc) =

{
1 if ŷc ≥ 0

−1 otherwise

2.3 Optimization Methods with Different Loss
Function

To optimize the models that we introduced, several ap-
proaches are applicable. The each model’s robustness is
highly influenced by the selection of loss function [8]. Al-
though negative log likelihood (NLL) is generally applied to
optimize a classifier, we further experimented with other loss
functions–specifically hinge and squared hinge:

LNLL =

N∑
i

8∑
c=1

ln(1 + exp(−yc,iŷc,i))

LHinge =

N∑
i

8∑
c=1

max(0, 1− yc,iŷc,i)

LHinge-sq =

N∑
i

8∑
c=1

max(0, 1− yc,iŷc,i)2

where yc,i ∈ {−1,+1} is the true label for tweet i’s symptom
c, N is the number of training instances and 8 indicates the
number of symptoms.

2.4 Ensembles Using Bagging
The ensemble is a conventional strategy of improving clas-

sification accuracy. Instead of using and improving one clas-
sifier for the NTCIR MedWeb task, we took the ensembles of
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Table 1: Data summary

Avg #word
Max #word

Vocabulary Avg #char
Max #char

Vocabulary
Train Test of word Train Test of char

ja 13.6 12.5 53 2161 35.1 33.6 142 958
en 13.2 11.9 60 1819 68.0 63.4 282 45
zh 11.4 10.0 41 2298 27.9 25.9 101 1236

strong machine learning methods. For this task, we focused
on neural networks–namely Hierarchical Attention Neural
Network (HAN) and Character-level Convolutional Neural
Network (CharCNN). To get the best results, we sought to
improve these classifiers by experimenting with various com-
binations of loss functions.

Ensembling is a machine learning algorithm that combines
multiple methods to boost classification accuracy. Normally,
since these tend to have low accuracies for complicated tasks,
weak machine learning algorithms are combined into an en-
semble, not strong ones. However, in this experiment, we
create ensembles of strong machine learning methods–namely
HAN and CharCNN. For this experiment, we used bagging
to ensemble these methods [3]. Bagging first creates N ′

datasets by resampling the original dataset. An average is
then computed over the model outputs from each resampled
dataset:

ŷBagging =
1

|N ′| · |M |
∑
n∈N′

∑
m∈M

ŷn,m

where N ′ is the set of resampled datasets, M is the set of
the model architectures and each ŷn,m is an output of the
model m trained on the n-th resampled dataset.

We made 20 resampled datasets for this purpose. We use
each dataset for training the HAN and CharCNN against the
3 loss functions, resulting in 6 methods. As a result of this
procedure, these 6 methods are subjected to each resampled
dataset which generates a total of 120 models to be learned.
We tested and compared various ensembles of these models
to identify the best classifiers for this task.

3. MATERIAL
The statistics of the MedWeb dataset are summarized

in Table 1. The English and Chinese datasets are gener-
ated from translating sentences from the Japanese datasets-
making the set of their labels identical.

In order to tokenize each of the sentences, we used the
NLTK TweetTokenizer [2], MeCab [7], and jieba [9] for our
English, Japanese, and Chinese tokenizers respectively.

4. RESULTS AND DISCUSSION
In this section, we discuss the results of our experiments.

All of the models are implemented with Keras [4]. Our
model, ultimately, obtained an 88.0% exact match accuracy.

4.1 Multi-label learning effects
For comparing label independent learning and multi-label

learning, we classified Japanese tweets using the HAN clas-
sifier and NLL loss function. The corresponding accuracies
are shown side by side in Table 2. While there is limited
improvement from label independent learning to multi-label
learning when we observe each label, the exact match accu-
racy significantly improves from 76.7% to 82.3%.

Table 2: Comparison between label-independent or multi-
label

Target
Exact match accuracy

Label-Independent Multi-Label

Influenza 0.977 0.988
Diarrhea 0.973 0.979
Hay Fever 0.971 0.975
Cough 0.988 0.991
Headache 0.979 0.981
Fever 0.931 0.929
Runny nose 0.948 0.952
Cold 0.944 0.965

Exact match 0.767 0.823

We suspect that the results are as such because learn-
ing via multi-label learning is able to take into account the
connections between diseases. For example, people with in-
fluenza may also have colds or fever. On the other hand,
learning labels independently may not be taking this into
account. Hence, multi-label learning generally gives better
results compared to independent label learning.

Since multi-label learning is generally a better method for
this task, we used multi-label learning in our experiment
first with language learning and then with ensembles.

4.2 Multi-Language Learning and Bagging
After comparing multi-language learning to language in-

dependent learning, the results show that multi-language
learning with bagging produces good results for all combi-
nations of classifiers and loss functions (see Table 3). Our
results also show that multi-language learning with bag-
ging is also better than multi-language learning on its own–
depicting how reducing generalization error through bagging
produces better results.

Nonetheless, our results for language independent learn-
ing already surpass the results of the benchmark (Table
3): 82.5% for Japanese (AKBL-ja-3: 80.5%), 79.5% for En-
glish (UE-en-1: 78.9%), and 80.9% for Chinese (TUA1-zh-3:
78.6%). We further exceed these label independent results
through single multi-label learning, or multi-label learning
without bagging, where our highest score is at 84.4% with
HAN and hinge. This shows that the multi-label learning
in general is better than language-independent learning for
this task. Finally, our score further improves with multi-
label learning with bagging: 86.9% accuracy using Charac-
ter level CNN with hinge loss function.

This segment of the experiment shows that it is better to
use multi-language learning with bagging for our dataset.
We then used multi-language learning with bagging when
we classify tweets with ensembles of neural networks.
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Table 3: Language Independent Learning vs. Multi-language Learning - This table shows that multi-language learning is
more accurate than language independent learning in any of the languages and classifiers for this dataset. We also append
the other team’s results for each language, AKBL-ja-3, UE-en-1, TUA1-zh-3 for benchmark, respectively.

Setting Exact match accuracy

Encode Loss
Language-Independent Multi-Language

ja en zh Single Ensemble

Attention
NLL 0.823 0.791 0.789 0.823 0.841
Hinge 0.823 0.795 0.809 0.844 0.841

Hinge-sq 0.825 0.786 0.794 0.822 0.844

CharCNN
NLL 0.800 0.718 0.808 0.831 0.848
Hinge 0.797 0.686 0.806 0.811 0.869

Hinge-sq 0.772 0.670 0.784 0.811 0.866

Benchmark 0.805 0.789 0.786 - -

Table 4: This table shows the results of our ensembles. Among the 9 ensembles we created, we submitted the last 3–particularly
the ensembles using both HAN and CharCNN. Of the three, the ensemble with loss functions NLL and Hinge produced the
highest accuracy: 88.0%.

Submission Id
Ensemble strategy

Exact match accuracy
Encode Loss

-
Attention

NLL × Hinge × Hinge-sq 0.842
- NLL × Hinge 0.836
- NLL × Hinge-sq 0.844

-
CNN

NLL × Hinge × Hinge-sq 0.861
- NLL × Hinge 0.861
- NLL × Hinge-sq 0.859

NAIST-*-1
Attention × CNN

NLL × Hinge × Hinge-sq 0.877
NAIST-*-2 NLL × Hinge 0.880
NAIST-*-3 NLL × Hinge-sq 0.878

4.3 Classification: Ensembles of Loss Func-
tions

We have 9 variations of ensembles that are taken from
the combinations of neural networks HAN, CNN, and HAN-
CNN with loss functions NLL-hinge-hinge squared, NLL-
hinge, and NLL-hinge squared (see Table 4). Of the 9, 3
were submitted for the MedWeb Task, namely (1) HAN and
CNN with NLL and Hinge, (2) HAN and CNN with NLL and
Hinge Squared, and (3) HAN and CNN with NLL, Hinge,
and Hinge Squared.

Our results here are superior to our previous results. We
garnered an 88.0% accuracy with an ensemble of HAN and
CNN with NLL and Hinge (see Table 4). This shows how en-
sembling boosts the accuracy of the already strong machine
learning methods of HAN and CNN.

We submitted the same three models for all language tasks
because the label set is the same with respect to the language
difference.

5. CONCLUSION
This paper discusses Team NAIST’s submission to NTCIR

13 MedWeb task. The task was to classify whether or not
pseudo-tweets refer to certain symptoms or diseases. The
task requires a multi-label classification of tweets coming
from a multi-lingual corpus (Japanese, English and Chinese)
which can contain up to 8 diseases.

We experimented with multi-label and label-independent
learning, where we found that multi-label learning provides
better results for this task. Moreover, we also looked into
multi-language and language independent learning, where
we found that multi-language learning with bagging pro-
vides superior results. Finally, with multi-label and multi-
language learning, the ensemble of hierarchical attention
network (HAN) and deep character-level convolutional neu-
ral network (CNN) with loss functions negative log like-
lihood (NLL) and hinge provided the highest accuracy of
88.0%.
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