

YJTI at the NTCIR-13 STC Japanese Subtask

Dec. 7, 2017 Toru Shimizu

1

Overview

Retrieval or Generation

【公開】

- Retrieval-based system
 - Effective if you have a good matching model and enough candidate responses
 - Pros
 - Human-written, fluent sentences for responses
 - The conversation can sometimes actually be interesting.
 - Hence more practical
 - Cons
 - Lack of flexibility
 - This can be mitigated with large amount of candidates and the variety in them.
 - 1.2M unique sentences in the training data

•

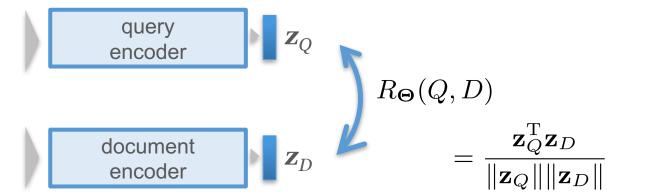
• DSSM (Deep Structured Semantic Model)

- Huang et al., 2013

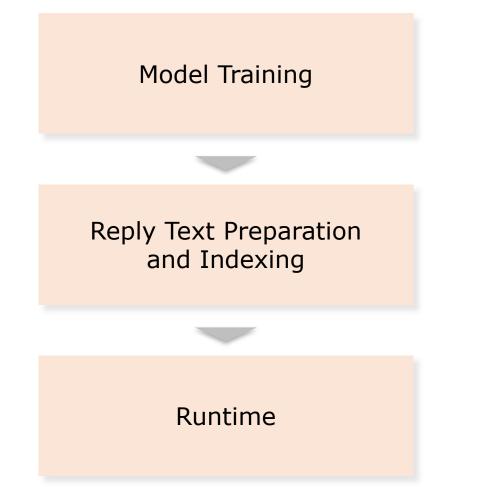
Q

- A method for IR, query-document matching

- Palangi et al., 2014
- LSTM-RNN for generating query and document representations



The Overall Process: Three Stages



- Train two models:
 - a comment encoder
 - a reply encoder
- Preprocess the training data to obtain candidate replies
- Generate vector representations
 of the replies
- Build the reply index
- Produce actual reply lists using the runtie system

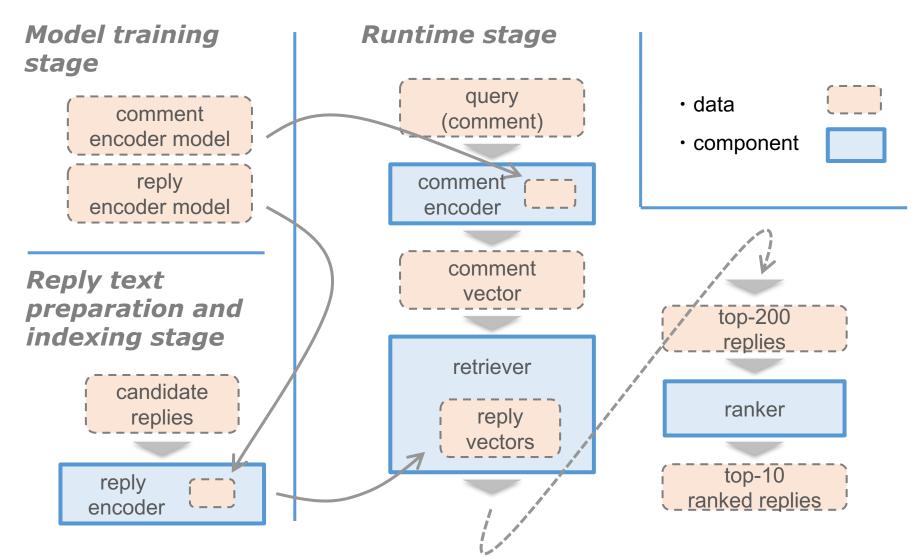
Submissions

【公開】

- Two runs:
 - YJTI-J-R1
 - Trained by Twitter conversation data
 - YJTI-J-R2
 - Trained mainly by Yahoo! Chiebukuro QA data
- The runtime system is the same.
- Only the models are different.

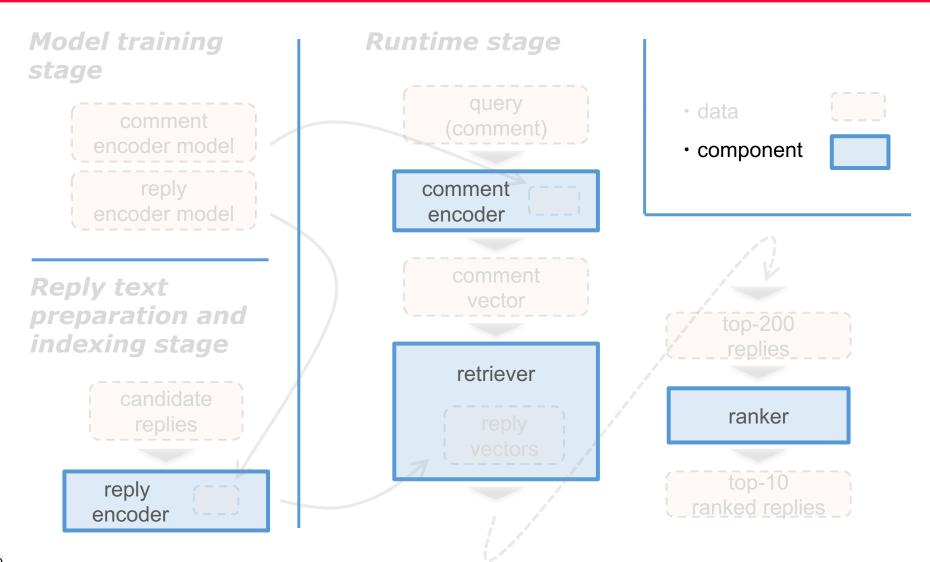
Runtime System

Runtime System Overview



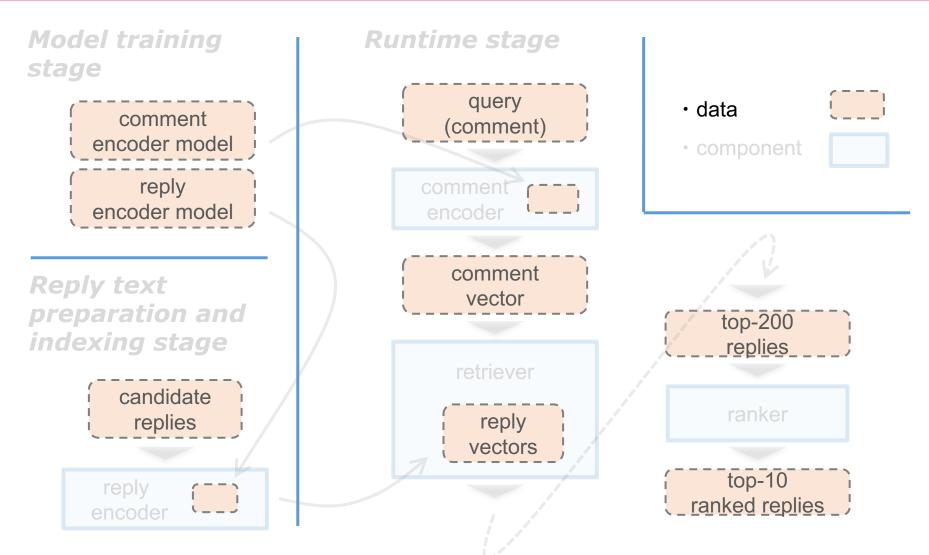
8

Runtime System Overview: Software Components

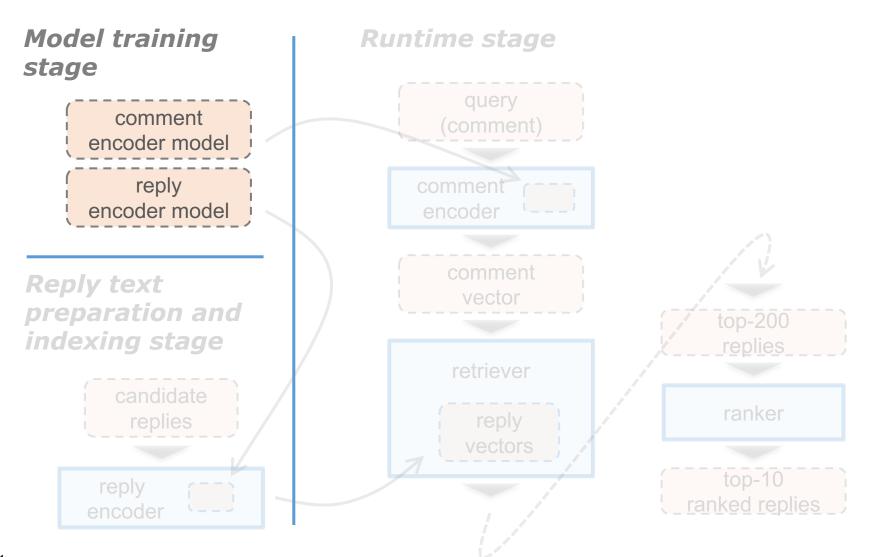


Runtime System Overview: Data

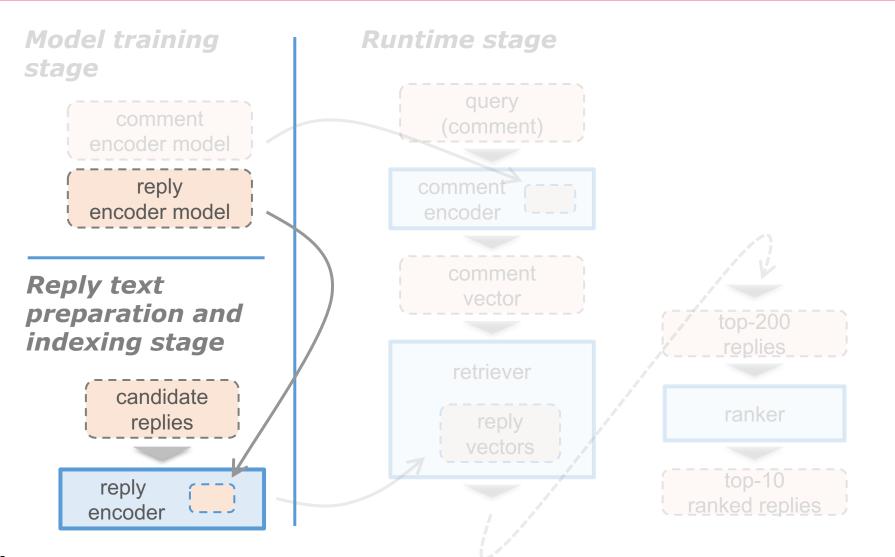
【公開】



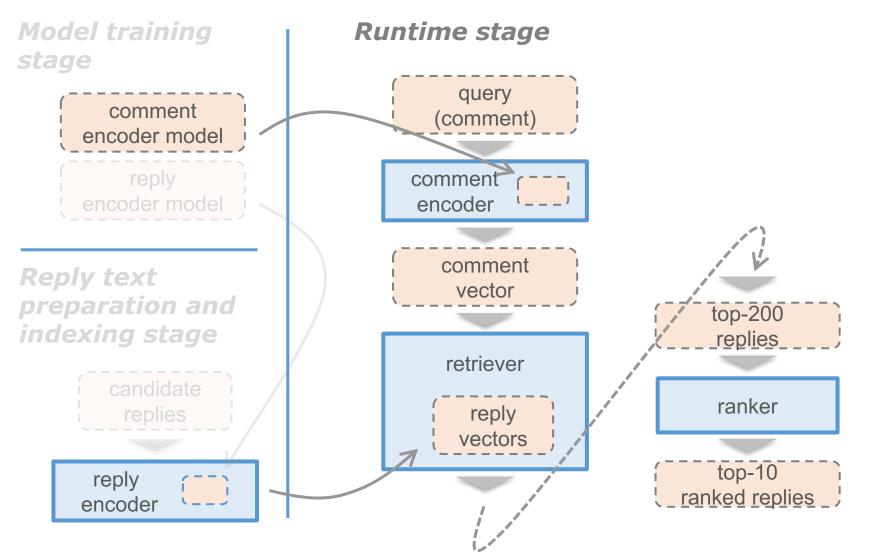
Runtime System Overview: The 1st Stage



Runtime System Overview: The 2nd Stage



Runtime System Overview: The 3rd Stage



Indexer and Retriever

- Generate 1024-element representations of reply candidates by the reply encoder model
- NGT
 - Open source software for graph-based approximate similarity search over dense vectors
 - Developed by M. Iwasaki
 - https://research-lab.yahoo.co.jp/software/ngt/
- Retrieve the nearest 200 reply vectors from a given comment vectors
 - L2-distance, cosine similarity
- Return the list of their texts and metadata

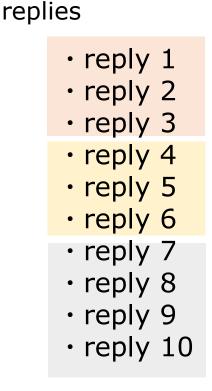
Ranker

 Three tiers for dealing with metadata matching: THEME, GENRE, and OTHER
 The final top-10

THEME The Theme is matched btw. the comment and a reply. (At most 3)

GENRE The Genre is matched btw. the comment and a reply (At most 3)

OTHER No metadata match. (No limitation of number)



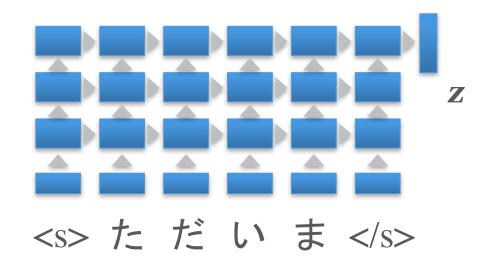
Model, Data, and Training

Comment/Reply Encoder Model YAHOO!

- 3-layer LSTM RNN
 - Formulation: Graves, 2013
 - LSTM's hidden layer size: 1024 (for all the
 - Embedding layer size: 256
 - Representation size: 1024

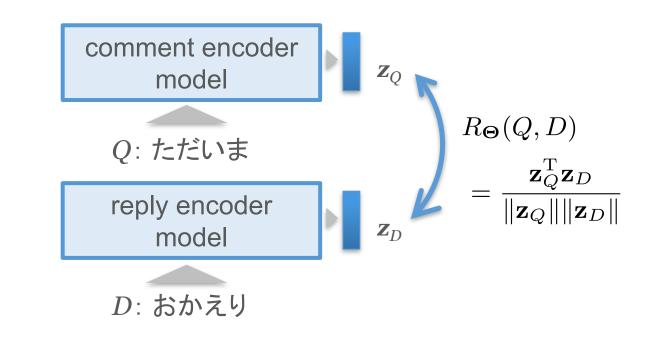
output layer

LSTM-RNN 3 LSTM-RNN 2 LSTM-RNN 1 embedding layer



Comment/Reply Encoder Model YAHOO!

• Training



 Consider this as a classification problem and maximize the probability for the right choice over a given dataset

$$P_{\Theta}(D_i^k | Q_i) = \frac{\exp(\beta R_{\Theta}(Q_i, D_i^k))}{\sum_{j=1}^5 \exp(\beta R_{\Theta}(Q_i, D_i^j))}$$

Comment/Reply Encoder Model YAHOO!

【公開】

• Training cont'd

run	model type	data name	records comsumed
YJTI-J-R1	DSSM	Twitter conversation	135.0M
YJTI-J-R2	LM	Y! Chiebukuro LM	171.5M
	DSSM	Twitter conversation	85.8M
	DSSM	Y! Chiebukuro QA	42.9M

Data for Model Training

【公開】

name	type	no. of records
Twitter LM	posts	100.0M
Twitter conversation	pairs	65.1M
Y! Chiebukuro LM	posts	202.0M
Y! Chiebukuro QA	pairs	66.3M

Results

• Performances measured by the validation data

matching task	YJTI-J-R1	YJTI-J-R2
Twitter conversation	0.835	0.759
Chiebukuro QA	0.864	0.967

• The official results under Rule-2

metric	YJTI-J-R1	YJTI-J-R2
Mean $nG@1$	0.4171	0.4726
Mean $nERR@2$	0.4544	0.5288
Mean $Acc_{L2}@1$	0.1860	0.2040
Mean $Acc_{L2}@2$	0.1490	0.2030
Mean $Acc_{L1,L2}@1$	0.6100	0.7200
Mean $Acc_{L1,L2}@2$	0.5750	0.6900

24

- Conclusions
- Effectiveness of the overall approach:
 - Retrieval-based system
 - DSSM-like matching powered by LSTM-RNNs trained over a large amount of linguistic resources
- Social QA data was surprisingly useful for modeling topic-oriented conversations seen in this Yahoo! News comments data

