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ABSTRACT
This paper presents our system participated in the NTCIR-
13 Short Text Conversation Task. Previous researches focus
on how to rerank response candidates but pay little attention
on how to generate high quality candidates. In this work,
we try different approaches for the retrieval part, such as
neural network features and symbolic features. The evalu-
ation results show that symbolic features can significantly
boost the performance of the retrieval-based chatbot. Ac-
cording to the official STC evaluation, we are in the second
best group among teams who participated in the Chinese
retrieval-based chatbots.

Team Name
Beihang
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Short Text Conversation (Chinese, Retrieval)

Keywords
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1. INTRODUCTION
Beihang team participates in the Chinese retrieval-based

Short Text Conversation (STC) task at NTCIR-13 [10]. This
report describes our approach on response selection and dis-
cusses the experimental results.

STC, a simple version of conversation, is defined as a one
round conversation comprising two short texts, where the
former one is the message given by a human and the latter
one is a response given by a computer. There are two domi-
nated approaches for this task, including the retrieval-based
approach [12, 13] and the generation based approach [11,
14, 6]. Generation-based methods generate responses with
natural language generation models learnt from the conver-
sation data, while retrieval-based methods re-use the exist-
ing responses by selecting proper ones from an index of the
conversation data. In this report, we show our preliminary
results on the Chinese retrieval-based chatbots [10].

The architecture of a retrieval-based chatbot [4] is shown
in the Figure 1. Given a message, it is normalized into a
clean text with pre-processing algorithms. After that, sev-
eral response candidates are retrieved from a pre-defined
index. Finally, matching models are employed to compute
similarities between the responses and the message. Pre-
vious research focus on the matching models but pay little
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Figure 1: The architecture of a retrieval-based chat-
bot.

attention on the candidate retrieval. Candidate retrieval,
however, is a crucial step for a chatbot, because an appro-
priate response have no chance to be selected if it cannot be
retrieved back in this step. Current work uses keyword based
approaches to retrieve candidates from the index, and key-
word based retrieval tools such as Lucene 1 and Elasticsearch
2 are integrated into their systems. However, some appro-
priate responses cannot be retrieved back with the meth-
ods, because they do not share many common words with
the given message. To mitigate this issue, we propose two
alternative retrieval approaches and give their preliminary
results on the Chinese STC data set.

The first approach is that we use sentence embedding and
approximated k nearest neighbor algorithms to directly find
semantically related candidates from the index. The sec-
ond approach is that we use symbolic knowledge to help
the keyword based retrieval, in which important entities are
taken into account. After the candidate retrieval, we train
a matching model with several similarity features, includ-
ing: Tf-idf cosine, LCS (Longest Common Substring), Word
overlap, Tree kernel, Language model, Translation probabil-
ity, Word Embedding cosine, GRU (Gated Recurrent Units)
and CNNs (Convolution Neural Networks). All the features
are combined as a ranking model by a gradient boosted re-
gression tree which is implemented by Xgboost 3.

2. SYSTEM DESCRIPTION
In this section, we elaborate our system in details.

2.1 Pre-Processing
1https://lucene.apache.org/
2https://www.elastic.co/
3https://github.com/dmlc/xgboost
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We choose a popular Chinese word segmentation tool named
jieba 4 to segment a Chinese sentence into several words. We
used a dictionary based named entity recognition algorithm
to extract entities in a text. The dictionary consists of Baidu
Baike entries 5, which have more than 1 Chinese characters.
To filter noise in the dictionary, we remove entires whose
inverse document frequency (IDF) are below 5.

2.2 Candidate Retrieval
Suppose that the entire data set is defined asD = {pi, ci}Ni=1,

where pi is a post, and ci is its associated comment. Given
a query q, the goal of the candidate retrieval component is
to form a subset D′ ∈ D, in order to reduce the time cost
of the candidate ranking. Here we use three approaches to
form D′. We randomly sample a c−i for each of post pi for
the further parameter learning.

2.2.1 Keyword based approach
The basic idea of candidate comment retrieval is to use the

invert index to obtain comments that share some words with
the input q. Since the number of retrieved comments is too
large to apply complex rerank algorithms, top 30 comments
are preserved with the Okapi BM25 [7] algorithm that is
formulated as

BM25(q, ci) =

M∑
j=1

IDF (wj)
f(wj , ci) · (k + 1)

f(wj , ci) + k · (1− b+ b · |q|
avgcl

)
,

(1)
where f(wj , ci) is the j-th word frequency in the comment
ci, |q| is the length of the query q in words, and avgcl is the
average comment length in the index. k = 1.5 and b = 0.75
in our implementation and IDF (wj) is the inverse document
frequency weight [8] of the term wj .

In the following section, we denote the approach as Rword.

2.2.2 Sentence embedding based approach
As the invert index may ignore comments that do not

share same terms with the input query, we use a embedding
based method to form D′. At first we train a recurrent
neural network with gated units (GRU) [3] to compute the
sentence representation vector of a post or a comment. The
parameters of GRU is optimized by maximizing

N∑
i=1

[
Cos

(
GRU(pi),GRU(ci)

)
−Cos

(
GRU(pi),GRU(c−i )

)]
(2)

where c−i is a randomly negative sampled comment for pi,
and Cos is the cosine similarity function.

By this mean, each text can be represented as a dense vec-
tor by GRU(·), and the Euclidean distance of two vectors
describes their gap in the semantic space. Given a new in-
put query and its sentence embedding, we find its neighbors
in the vector space as candidates. We adopt the Annoy 6, a
C++ library with Python bindings, to do the approximate
nearest neighbor search for the efficiency. Note that we can
also compute the cosine distance between the input query
and a comment one by one, but it increases the system over-
load significantly. The sentence embedding based approach
for retrieval is denoted as Rembed.

4https://github.com/fxsjy/jieba/
5https://baike.baidu.com/
6https://github.com/spotify/annoy

2.2.3 Symbolic knowledge enhanced approach
We leverage symbolic knowledge, named entity informa-

tion, to enhance the key word based retrieval. We modify
Equation 1 that only uses the frequency information to com-
pute the score, and propose a new ranking function

M∑
j=1

IDF (wj)
f(wj , ci) · (k + 1)

f(wj , ci) + k · (1− b+ b · |q|
avgcl

)
+λ

O∑
l=1

f(el, ci)

|ci|
,

(3)
where el represents an entity in the query q, |ci| is the com-
ment length, λ is a trade-off between entity matching score
and BM25 score which is chosen as 5 in our system. We
denote this approach as Rsym.

We can obtain 30 candidate comments by these approaches
respectively in our different submissions.

2.3 Candidate Ranking
Candidate ranking targets at reranking comments C =
{ci|(pi, ci) ∈ D′} according to their similarities with the in-
put query q. To this end, we first extract similarity features
between query and comments and then combine these fea-
tures to predict the final similarity score.

2.3.1 Similarity Features
We propose several features to compute the similarity.
Tf-idf cosine: The query q and comments C are con-

verted to one hot representations weighted by tf-idf values,
where tf is the term frequency in the text, and idf is cal-
culated using the entire data in the index. The cosine of
representations is used as a feature.

Longest common subsequence: we measure the lex-
ical similarity of each ci and q with the term-level longest
common subsequence (LCS) [1]. The length of LCS is nor-
malized by dividing the maximum length of the two texts.

Word overlap: we calculate the normalized count of
common ngrams (n=1,2,3) and nouns.

Tree kernel: tree kernels are similarity functions used
to measure the syntactic similarity of a text pair. Here we
employ the subtree kernel (ST) [9] to compute their syntactic
distance.

Translation probability: we learn word-to-word trans-
lation probabilities using GIZA++ 7 with the index data. In
training, we regard posts as source language and their com-
ments as target language. Following [4], we use the transla-
tion probability p(comment|query) as a similarity feature.

Word embedding cosine: we employ a pre-trained word
embedding on the index data, where the dimensionality of
word vectors is 200. We average the embedding of words in
a piece of text as its representation, and compute the cosine
of the representations of two pieces of text as a feature.

GRU: The recurrent neural network with gated units
(GRU) [3], that is able to model the sequential information
of a text, is employed to compute the sentence embeddings
of q and ci, denoted as ~q and ~ci respectively. Then we use
a bilinear function to compute the similarity between q and
ci, which is written as

sim(q, ci) = ~q>W~ci + b, (4)

where W and b are two parameters.
CNNs: Convolutional Neural Network (CNN) models the

n-gram information in a text, that has proven effective on

7http://www.statmt.org/moses/giza/GIZA++.html
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Table 1: Official Statistics of dataset for Chinese
subtask

Repository
#posts 219,174
#comments 4,305,706
#original pairs 4,433,949

Labeled Data
#posts 769
#comments 11,535
#labeled pairs 11,535

Test Data #query posts 100

various NLP tasks such as text classification [5], question
answering [15] and etc,. Here we use both of term level
CNN and char level CNN to represent texts, and then use a
bilinear function to compute text similarity score.

We learn the GRU and CNN network by minimizing cross
entropy on training data. Let Θ denote the parameters, then
the objective function can be formulated as

−
2N∑
i=1

[
lilog(f(pi, c

(·)
i )) + (1− li)log(1− f(pi, c

(·)
i ))

]
, (5)

where li ∈ {0, 1} is a label, c
(·)
i means it may be c+i or c−i .

2.3.2 Feature Combination
Since our objective can be formulated as a ranking prob-

lem, we learn a gradient boosted regression tree using Xg-
Boost [2] as a ranking model to combine all features. The
ranking model is learned by minimizing pairwise loss on
training instances provided by the annotated training data.
We denote the model as f(q, ci).

2.3.3 Ranking comments
We consider both of query-comment similarity and query-

post similarity in our reranking algorithm, which is written
as

Score(q, ci) = g(q, pi) + α · f(q, ci), (6)

where α is 0.8 in our implementation. g(q, pi) is the semantic
distance between the query and the post, which is computed

by Cos

(
GRU(pi),GRU(q)

)
.

3. EXPERIMENTS

Table 2: XgBoost Settings
eta 0.01

num rounds 200
max depth 6

gamma 6
min child weight 1
colsample bytree 0.8

subsample 0.6

The STC Chinese subtask uses post-comment pairs crawl-
ing from Weibo to construct a million-scale repository. Ta-
ble 1 shows the details of the index data. Besides, 769 query
posts and 11,535 candidate comments are manually labeled
as the annotated training data. Note that 100 query posts
are carefully selected as the test data.

3.1 Parameter Settings

3.1.1 Feature Computation Settings
To train the GRU and CNNs, the post-comment pairs in

the repository is considered as the positive samples. And
for each post, we randomly select the same number of com-
ment from other pairs as the negative samples. The word
embedding size of GRU and CNN is fixed as 200, and the
pre-trained word embeddings is used to initialize. The hid-
den unit size of GRU is 200. And the convolution kernel size
in CNNs is set to 3*200, 4*200 and 5*200 respectively. The
GRU and CNNs are both optimized by Adam to minimize
the cross-entropy loss. The learning rate is fixed to 0.0001.

Xgboost is used to combine all the similarity features. We
split the training data into 5 folds and adopt the cross vali-
dation to avoid overfitting. We aim to minimize the pairwise
loss in XgBoost and use the nD@1 to evaluate the perfor-
mance. After training and validation, the final settings is
shown in Table 2.

3.1.2 5 Run Settings
We submit 5 retrieval-based runs in the task. The settings

of each run are shown as follows:

• R1: We first use the keyword-based approach Rword

to generate candidate post-comment pairs. After that,
we only consider the query post similarity (i.e., α = 0)
in the reranking strategy.

• R2: Rword is also used for candidate generation. We
consider query-post and query-comment similarities in
the reranking strategy following Equation 6.

• R3: R3 utilizes the sentence embedding based approach
Rembed for candidate retrieval. The ranking method is
the same with R2.

• R4: R4 utilizes the symbolic knowledge enhanced ap-
proach to retrieve the candidates and reranks these
candidates by Equation 6.

• R5: We merge candidates comments given by Rword

andRembed and employ the reranking strategy in Equa-
tion 6.

3.2 Results and Analysis
In the STC Chinese subtask, three different metrics are

employed for the evaluation including nG@1 (normalised
gain at cutoff 1), P+, and nERR@10 (normalised expected
reciprocal rank at cutoff 10) [10].

64 retrieval-based and 56 generation-based runs are sub-
mitted for the Chinese subtask. Table 3 shows the results
for top 15 runs. One can see that SG1 achieves the best
result both in the retrieval-based and the generation-based
subtask. Our submission achieves the second best perfor-
mance in the retrieval-based subtask in terms of the nG@1
metric.

The results of our 5 runs are shown in Table 5. Comparing
to the baseline R1, the improvement of R2 shows the advan-
tage of the reranking. Note that R4 outperforms other 4
runs, demonstrating that symbolic information is useful in a
retrieval based chatbot. R3 and R5 do not achieve the per-
formance as we expect, since the the quality of the sentence
embedding is not good enough.

To further investigate the characteristics of 5 runs, we
conduct a qualitative analysis which is shown in Table 4.
Run 1 and Run 2 are able to handle a post-comment pair
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Table 3: Official STC Results for the top 15 runs
Run Mean nG@1 Run Mean P+ Run Mean nERR@10

SG01-C-G1 0.5867 SG01-C-G1 0.6670 SG01-C-G1 0.7095
SG01-C-G3 0.5633 SG01-C-G3 0.6567 SG01-C-G3 0.6947
SG01-C-G2 0.5483 SG01-C-G2 0.6335 SG01-C-G2 0.6783
SG01-C-R1 0.5355 SG01-C-R3 0.6200 SG01-C-R3 0.6663
SG01-C-R2 0.5168 SG01-C-R1 0.6084 SG01-C-R1 0.6579
splab-C-G4 0.5080 splab-C-G4 0.6080 splab-C-G4 0.6492
SG01-C-R3 0.5048 SG01-C-R2 0.5944 SG01-C-R2 0.6461

Beihang-C-R4 0.4980 Beihang-C-R4 0.5818 splab-C-G1 0.6282
splab-C-G1 0.4848 splab-C-G1 0.5768 splab-C-G5 0.6175
Nders-C-R4 0.4780 splab-C-G5 0.5657 SG01-C-G4 0.6129
Nders-C-R2 0.4743 DeepIntell-C-R1 0.5564 Beihang-C-R4 0.6105
Nders-C-R3 0.4647 SG01-C-G4 0.5545 DeepIntell-C-R1 0.5994
Nders-C-R1 0.4593 Beihang-C-R2 0.5510 splab-C-G3 0.5966
Nders-C-R5 0.4550 Nders-C-R2 0.5497 Nders-C-R2 0.5882

Beihang-C-R2 0.4510 Nders-C-R5 0.5495 Nders-C-R5 0.5868

Table 4: Case Examples of 5 Runs
Run Name Case Examples

Beihang-C-R1
post:母亲节快乐，愿天下的母亲健康
漂亮
cmnt:愿天下的母亲。母亲节快乐啊。

Beihang-C-R2

post:[泪]很喜欢几米每天分享的漫画围
脖，大爱这个围脖！
cmnt:大爱几米漫画呀，不经意的文字
却直触心里。

Beihang-C-R3
post:比特币洗白了，大利好啊，支持
cmnt:如果不出利好，市场会怎么说？

Beihang-C-R4

post:美国股市集体下跌，连续第三个
交易日走低
cmnt:美国股市和国内比的好处是能上
能下。比如：东南融通

Beihang-C-R5
post:木棉。最后一张是今早院门口。
cmnt:最后一张，象是油画，不错。

Table 5: Comparison of Performance on 5 Runs
Run Name Mean nG@1 Mean P+ Mean nERR@10
Beihang-C-R1 0.4343 0.5441 0.5643
Beihang-C-R2 0.4510 0.5818 0.5716
Beihang-C-R3 0.4080 0.5441 0.5623
Beihang-C-R4 0.4980 0.5818 0.6105
Beihang-C-R5 0.3937 0.5215 0.5544

that shares several terms, since the retrieval is conducted in
a term overlap way. Run 3 requires the entity overlap be-
tween a post and a comment, such as “利好” in the example.
Run 4 and Run 5 are good at dealing with post-comment
pairs have high similarity scores in the semantic space.

4. CONCLUSIONS
We focus on the candidate retrieval problem in the re-

trieval based chatbots, and propose two novel approaches
for this problem. The preliminary results show that sym-
bolic information can significantly boost the performance of
a retrieval based chatbot.
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