
DeepIntell at the NTCIR-13 STC-2 Task

Chunyue Zhang
DeepIntell Co. Ltd, China

cyzhang@deepintell.cn

Dongdong Li
DeepIntell Co. Ltd, China

ddli@deepintell.cn

Huaxing Shi
DeepIntell Co. Ltd, China

shihuaxing@deepintell.cn

ABSTRACT
This paper provides an overview of DeepIntell’s system par-
ticipated in the Short Text Conversation (STC2) task of
Chinese at NTCIR-13. Previous STC of NTCIR-12 is a
conversation task which can be defined as an IR problem,
i.e.,retrieval based a repository of post-comment pairs. STC2
of NTCIR-13 provided a transparent platform to compare
the generation-based method and IR method via compre-
hensive evaluations. In this paper, we adopt the IR method
and propose a SVM based ranking method with the deep
matching features to score the post-comment pairs. Our
framework is based on the following four steps: 1) prepro-
cessing, 2) building search index, 3) comment candidates
generation, 4) comment candidates ranking. Our best run
achieves 0.5564 for mean P+,0.4323 for mean nDCG@1 and
0.5594 for mean nERR@10. The evaluation of submitted
results empirically shows our framework is effective in all
these terms.

Team Name
DeepIntell

Subtasks
Short Text Conversation-2 (Chinese)

Keywords
retrieval, deep matching, ranking, conversation

1. INTRODUCTION
With the emergence of social media and the wide spread of

mobile devices, conversation via short texts has become an
important way of communication. Short Text Conversation-
2 (STC2) [7] is a NTCIR-13 task which tackles the following
research goal: a STC2 system can reuse an old comment
from the repository to satisfy the author of the new post,
e.g. the retrieval-based method.

Given a new post, this task aims to retrieve an appropri-
ate comment from a large post-comment repository. The
retrieved comment is judged from four facets: Fluent，Co-
herent, Self-sufficient and Substantial.

In this paper, we propose a SVM ranking based method
with the deep matching features to score the new post-
comment pairs retrieved from the repository based on the
following specific steps: preprocessing, building search in-
dex, comment candidates generation and comment candi-

dates ranking. We then show the effectiveness of the method
of measuring similarity between short texts.

Our contribution is twofold: 1) we apply Whoosh to index
the repository. In this way, it is very easy and fast to find
the related information from the repository; and 2) we put
forward a SVM ranking approach for candidates ranking to
find the most appropriate comments for a new post.

2. SYSTEM ARCHITECTURE
In this section, we will respectively elaborate on two com-

ponents of our system. Figure 1 illustrates the framework
of our system.

Figure 1: the DeepIntell STC2 system framework.
It encapsulates two main components, i.e., informa-
tion retrieval, semantic ranking module.

IR module is composed of preprocessing module, search
engine and repository of post-comment pairs. We adapted
the Whoosh 1 as the search engine, which use BM25F al-
gorithm for scoring. The top N retrieved results should be
reranked in following ranking module, to provide the final
top 10 comments .

2.1 Preprocessing
In this module, we do data cleaning, word segmentation,

removal of stop words. We convert traditional Chinese to
simplified Chinese and remove the peculiar symbols and ex-
tra punctuations in order to clean the text. Chinese short
texts are written without any symbols between characters,
therefore we need to segment them before using queries or
building search indexes. After measuring the accuracy, per-
formance, and interface compatibility, we use jieba 2 as the
1https://bitbucket.org/mchaput/whoosh
2https://pypi.python.org/pypi/jieba/

317

Proceedings of the 13th NTCIR Conference on Evaluation of Information Access Technologies, December 5-8, 2017 Tokyo Japan



Chinese segmenter. In order to improve the accuracy and
performance of search engines, we use a stop words list (766
stop words, including punctuation, tone words and conjunc-
tions) to filter the meaningless words and symbols. The
following example in Table 1 shows the origin text, segmen-
tation result and filtering result.

2.2 Search Engine
There are millions post-comments pairs in the repository,

and it’s necessary to retrieve the most appropriate comment
candidates for a new post efficiently. Therefore, using a ma-
ture open source search engine framework can ensure both
stability and computational performance. In fact, there are
several open source retrieval frameworks can meet our needs,
such as Lucence, elasticsearch, and we choose Whoosh to
build index of posts and comments, because of its flexibility
and the medium size of the repository. The Whoosh is a fast,
full-text indexing and searching library implemented in pure
Python. The Whoosh’s functional modules can be easily ex-
tended or replaced to meet our needs. The index building
mainly through the preprocessing module and the search en-
gine, post-comment pairs will be stored to the search engine,
and in the search processes through the same modules to re-
trieve comments. The preprocessing module adopts Jieba
as word segmentation tool. In addition, when building the
index, the stop words are filtered to ensure the performance
of search engine.

2.3 Comment Candidates Generation
In practice we change the size of comment candidates to

measure the impact. In this paper V1 is the strategy with
120 comments, and V3 is the strategy with 180 comments.
Given a new post, to generate 120 or 180 comment candi-
dates we combine the results of three ways from the reposi-
tory, as following:

• The top 40 or 60 comments, which are retrieved from
the repository by Whoosh, according similarity of cor-
responding post and new post.

• The top 40 or 60 comments, which are retrieved from
the repository by Whoosh, according similarity of com-
ment themselves and new post.

• The top 40 or 60 comments, which are retrieved from
the repository by Whoosh, according multi similarity
of corresponding post and comments themselves and
new post.

To generate comments list in each strategy, we use BM25F
[4] (default algorithm in Whoosh) algorithm in the search
engine. BM25F is an extension of the BM25 ranking func-
tion adapted to score structured documents. It is well known
that the probability of relevance of a document increases as
the term frequency of a query term increases, and that this
increase is non-linear [5]. For these reasons most modern
ranking functions use an increasing saturation function to
weight document terms that appear in the query. We use
the following rank function.

BM25Fd =
∑

t∈q∩d

tf(t, d)

k1 + tf(t, d)
× idf(t)

tf(t, d) =
∑
c∈d

wc × tfc(t, d)
(1)

where c represents each field contained in the document
d, wc is the weight or boost factor for each field in the doc-
ument and tfc(t, d) is the field term frequency function of
the term t in the field c. This simple modification of the
classical tf−idf equation allow us to compute the score of
the documents considering the structural information.

2.4 SVM based Ranking Model
For the retrieval based STC2 task, given a new post,

the search engine firstly retrieves the candidate posts and
the corresponding comments by the search strategy talked
above. To find the most appropriate comments for the given
post, our system use a directly linear SVM based ranking
model [2] on the relevance score of comment candidates for
a new post. In our system, we collect the following features
to capture the relevance between the given post and the
retrieved post-comment pairs.

• Recall and precision of 2-gram: Recall and precision of
2-gram matches for the given post and the candidate
comments.

• The BLEU-1 evaluation metrics in Machine Transla-
tion for the given post and the candidate comment.

• Edit distance: Defined as the least steps to transform
the post sentence to candidate comment sentence using
insertion, deletion and substitution.

• Longest Common Sub-sequence(LCS): The sum of all
the longest same sub-sequence length between post
and candidate comment.

• Cosine similarity: The given post and the candidate
comment are assumed to be two vectors in a |V|-dimensional
vector space. |V| is the number of unique terms in the
corpus. Calculate the cosine between of two vectors.
Also calculate the cosine between the give post and
the candidate post.

• Word embedding: we use the average of word vectors
of the given post and comment to represent the sen-
tence, and calculate their cosine.

• Deep Matching measure: a feature representing the se-
mantic matching between the post and comment using
the DL methods discussed the section 2.5.

2.5 Deep Matching features
In this section, we use a deep matching framework [3]

to measure the semantic matching between the post and
comment. We resort to a CNN structure built on the output
of an LSTM [1] layer, in order to represent a more composite
distributed representation of post and comment.

The structure of the deep matching in our work is similar
to the one in [8], as shown in Figure 2. We share the same
parameters between the post and comments sides. A LSTM
layer generates the distributed representation of the whole
sentence, and the CNN layer and max-pooling operation ex-
tract the most significant information of the sentence, then
utilize cosine similarity to measure their semantic distance.
Following the same ranking loss in the [8], we define the
training objective as a hinge loss.

L = max{0,M − sim(p, c+) + sim(p, c−)} (2)

318

Proceedings of the 13th NTCIR Conference on Evaluation of Information Access Technologies, December 5-8, 2017 Tokyo Japan



Table 1: The preprocessing step
Short text ID repos-post-2000235240

Origin Text 【2013 年 7 款将会改变我们生活的未来派设备】
(The 7 futuristic equipments of year 2013, which will change our life)

Segmentation Result 【 2013 年 7 款 将 会 改变 我们 生活 的 未来派 设备 】
Filtering Result 2013 年 7 款 会 改变 生活 未来派 设备

where c+ is a ground truth comment, and c− is an instance
comment randomly chosen from the entire comments space,
and M is the constance margin. In our work, we define
sim(p, c) = cosine(p, c). We treat any post with more than
one ground truth as multiple training examples, each for one
ground truth.

In the STC2 task, the chosen comment will be labelled
as +1 at most if the comment is very similar with the post
at the word level, so we penalize the string similarity as
sim(p, c) = cosine(p, c)− ovp(p, c). Here ovp(p, c) is defined
the ratio of the number of words in the comments appeared
in the post.

Further, we try two ways to improve the loss function.
First way is to encourage the chosen comment that is more
semantic relevant with the post, and the other way is to
penalize the very high similarity as follows.

• Sim Credit:
L = max{0,M − sim(p, c+) + sim(p, c−)}+

λ×max{0, θlow − cosine(p, c+)}
(3)

Here θup means a similarity lower bound constant.
And λ is a regularized factor. In this way we hope the
minimum semantic similarity between the post and the
comment is greater than θlow.

• Sim Penalty:

L = max{0,M − sim(p, c+) + sim(p, c−)}+
λ×max{0, θup, cosine(p, c+)}

(4)

Here θup means a similarity upper bound constant. In
this way we hope the maximum semantic similarity
between the post and the comment is less than θup.

3. EXPERIMENTS

3.1 Data Set
In the STC2 task, there are 219,174 Weibo posts and

the corresponding 4,305,706 comments. There are 4,433,949
post-comment pairs. So each post has 20 different comments
on average, and one comment can be used to respond to
multiple different posts.

There are 769 query posts and each of them have about 15
comment candidates in the labelled ranking validation data.
There are 11,456 post-comment pairs with “suitable(2)”,
“neutral(1)”, and “unsuitable(0)” labels.

“Suitable” means that the comment is clearly a suitable
comment to the post, “neutral” means that the comment
can be a comment to the post in a specific scenario, while
“unsuitable” means it is not the two former cases.

100 posts are used for test. We submitted up to five runs
to the task. In each run, a ranking list of ten comments for
each test query is requested.

Figure 2: Deep Matching Architecture using
CNN/LSTM

3.2 Evaluation Metrics
The evaluation metrics are nG@1, nERR@10 and P+[6].
nG@1 shows the quantity of effective result (such as L0,

L1, L2 result) in the retrieved candidates. It will take three
values: 0, 1/3 or 1 in this task.

nERR@10 shows the rank correctness of the candidates
ranking, which means that the more effective result should
be ranked as more front of the ranking list of retrieved can-
didates.

P+ depends most on the position of the best effective
result in the ranking list of retrieved candidates. It gives
the top ranked result the most ratio.

3.3 Experiments Results
First, we introduce all the hypermeters in our experiments

here. We use the SVMrank package [2] to train the rank
model according the validation set. We just use the linear
kernel and the c is set to 7000. For training the deep match-
ing model, we use word2vec tookit to pre-train the 200d
word embedding on the STC2 repository corpus. For the
LSTM layer, we set the hidden vector is also 200. For the
CNN layer, we set the filter size as [2,3], and the number
of filters is 500. The batch size is 256 and the learning rate
is 0.05. And we set the maximum epochs 10 to stop the
training phase. We empirically set the θlow as 0.3, and θup
as 0.85. And we use the standard SGD to minimize the loss
function.

For the test set, we submitted five runs for comparison
and analysis:

• DeepIntell-C-R1: SVM ranking with word-level-feature
and Deep Matching feature with Sim Credit loss on

319

Proceedings of the 13th NTCIR Conference on Evaluation of Information Access Technologies, December 5-8, 2017 Tokyo Japan



Table 2: Ofcial STC2 results for team DeepIntell
Mean nG@1 Mean P+ Mean nERR@10

DeepIntell-C-R1 0.4323 0.5564 0.5994
DeepIntell-C-R4 0.4077 0.5270 0.5774
DeepIntell-C-R2 0.3923 0.5258 0.5678
DeepIntell-C-R3 0.3773 0.5082 0.5484
DeepIntell-C-R5 0.3523 0.5023 0.5360

V1-retrieval results.

• DeepIntell-C-R4: SVM ranking with word-level-feature
and Deep Matching feature on V1-retrieval results.

• DeepIntell-C-R2: SVM ranking with word-level-feature
and Deep Matching feature with Sim Credit loss on
V3-retrieval results.

• DeepIntell-C-R3: ranking just using Deep Matching
scores with Sim Credit loss on V3-retrieval results.

• DeepIntell-C-R5: ranking just using Deep Matching
scores with Sim Penalty loss on V3-retrieval results.

The official results of our system is shown in the Table 2.
Compared DeepIntell-C-R1 with DeepIntell-C-R4, we can
see the Sim Credit loss function improve the matching a
lot. And compared with DeepIntell-C-R5, we can see the
Sim Penalty doesn’t work. Compared DeepIntell-C-R1
with DeepIntell-C-R3, we find the V1 retrieval strategy is
more suitable for the STC2 task.

4. CONCLUSIONS
In this paper we proposed a system to rank candidate

comments in the repository and find appropriate responses
of a new post. Our best run achieves 0.5564 for mean P+,
0.4323 for mean nDCG@1 and 0.5594 for mean nERR@10
on the STC2 Chinese task.

5. REFERENCES
[1] S. Hochreiter and J. Schmidhuber. Long short-term

memory. Neural computation, 9(8):1735–1780, 1997.
[2] T. Joachims. Training linear svms in linear time. In

Proceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining,
pages 217–226. ACM, 2006.

[3] Z. Lu and H. Li. A deep architecture for matching
short texts. In Advances in Neural Information
Processing Systems, pages 1367–1375, 2013.

[4] J. R. Pérez-Agüera, J. Arroyo, J. Greenberg, J. P.
Iglesias, and V. Fresno. Using bm25f for semantic
search. In Proceedings of the 3rd international semantic
search workshop, page 2. ACM, 2010.

[5] S. Robertson, H. Zaragoza, and M. Taylor. Simple
bm25 extension to multiple weighted fields. In
Proceedings of the thirteenth ACM international
conference on Information and knowledge management,
pages 42–49. ACM, 2004.

[6] T. Sakai, L. Shang, Z. Lu, and H. Li. Topic set size
design with the evaluation measures for short text
conversation. In Asia Information Retrieval
Symposium, pages 319–331. Springer, 2015.

[7] L. Shang, T. Sakai, H. Li, R. Higashinaka, Y. Miyao,
Y. Arase, and M. Nomoto. Overview of the NTCIR-13
short text conversation task. In Proceedings of
NTCIR-13, 2017.

[8] M. Tan, B. Xiang, and B. Zhou. Lstm-based deep
learning models for non-factoid answer selection.
CoRR, abs/1511.04108, 2015.

320

Proceedings of the 13th NTCIR Conference on Evaluation of Information Access Technologies, December 5-8, 2017 Tokyo Japan


