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= Introduction €

Motivation

 In recent years, encoder-decoder mechanism like Sequence-to-Sequence Model has been applied successfully in many fields,
Including short text conversation and machine translation. The inputs and outputs of the models are usually word sequences,
named as WordSeg-to-WordSeq Model

e However, for a fixed-size training corpus, data sparseness problem could be an obstacle.

Main ldea

 To address the problem, through this task, we propose the idea of ConceptSeqg-to-WordSeq Model

 That Is, given input word sequence, we first predict the concept for each word of the word sequence and thus form a concept
sequence as the input of the LSTM model. The output remains the form of word sequence.

= Model €

ConceptSeqg-to-WordSeqg Model
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* The approach is based on our two observations: EEEEE
1. For almost all Chinese words, once a word’s simplified POS is
identified, its comprehensive POS can be referred.
2. For most cases in Ehownet, a pair of word and its comprehensive
POS represents a unigue sense.
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* Input Is concept sequence while output Is word sequence.
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Experimental Settings Results
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LSTM Seq-to- [Pretrain word |Attention N-gram on
Seq Type embedding model type |decoding

WS-to-WS CBOW general bigram

WS-t0-WS = general bigram 0.0017 0.0029 0.0015
WS-to-WS CBOW concat trigram 0.005 0.0086 0.0046
CS-to-WS CBOW concat bigram 0.01 0.0171 0.0093

0.0083 0.0143 0.0077

 Pretrained word embedding by using CBOW of

word2vec on ASBC Chinese corpus with size of 10 1P E W/ NSRRI E R AT D] B kAR S U k[ 5 ]
million words.

« Embedding dim: 300

e During training, we filter out the pairs which are
labelled as high quality by all three annotators,
leaving only 6276 pairs are used for training.
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