Yasutomo Kimura^{1,2}, Hideyuki Shibuki³, Hokuto Ototake⁴, Yuzu Uchida⁵, Keiichi Takamaru⁶, Kotaro Sakamoto^{3,7}, Madoka Ishioroshi⁷, Teruko Mitamura⁸, Noriko Kando^{7,9}, Tatsunori Mori³, Harumichi Yuasa¹⁰, Satoshi Sekine², and Kentaro Inui^{11,2}

Abstract. The NTCIR-14 QA Lab-PoliInfo aims at real-world complex Question Answering (QA) technologies using Japanese political information such as local assembly minutes and newsletters. QA Lab-PoliInfo has three tasks, namely Segmentation, Summarization and Classification task. We describe the used data, formal run results, and comparison between human marks and automatic evaluation scores.

Keywords: NTCIR-14 · QA Lab · PoliInfo · question answering · political information · local assembly minutes · segmentation · summarization · classification.

1 Introduction

The QA Lab-PoliInfo (Question Answering Lab for Political Information) task at NTCIR 14 aims at complex real-world question answering (QA) technologies, to show summaries of the opinions of assembly members and the reasons and conditions for such opinions, from Japanese regional assembly minutes.

We reaffirm the importance of fact-checking because of the negative impact of fake news in the recent years. The International Fact-Checking Network of the Poynter Institute established that April 2 would be considered as International Fact-Checking Day from 2017. In addition, fact-checking is difficult for general Web search engines to deal with because of the filter bubble developed by Eli Pariser[1], which keeps users away from information that disagrees with their viewpoints. For fact-checking, we should confirm primary sources such as assembly minutes. The description of the Japanese assembly minutes is a transcript

	Fake News Challenge Stage 1	CLEF-2018 Fact Checking Lab	NTCIR QA Lab-PoliInfo
Dataset	News articles	Political debate	Assembly minutes and newsletter
Task	Stance Detection	Task1: Check-worthiness	Task1: Segmentation Extracting of the range of primary information
	Classifying the stance of the body using both a headline and a body text. Output is as follows:	Prediction which claim in a political debate should be prioritized for fact-checking.	Task2: Summarization Summarizing of local assembly member's and governor's utterance
	 Agree Disagree Discussed Unrelated 	Task2: Factuality Checking the factuality of the identified worth-checking claims.	Task3: Classification Classifying an utterance which includes fact- checkable statement and opinion for a political topic.
Number of training data	2,586 articles	1,400 sentences x 3 files	Segmentation : 298 set Summarization : 596 set Classification : 14 topic (includes 10,291 sentences)
Language	English	English and Arabic	Japanese

Fig. 1. Comparison with related shared tasks

of a speech, which is very long; therefore, understanding the contents, including the opinions of the members at a glance is difficult. New information access technologies to support user understanding are expected, which would protect us from fake news.

We provide the Japanese Regional Assembly Minutes Corpus as the training and test data, and investigate appropriate evaluation metrics and methodologies for the structured data as a joint effort of the participants.

The QA using Japanese regional assembly minutes has the following challenges to consider:

- 1) comprehensible summary of a topic;
- 2) beliefs and attitudes of assembly members;
- 3) mental spaces for other assembly members;
- 4) contexts, including reasons;
- 5) several topics in a speech; and
- 6) colloquial Japanese including dialect and slang.

In addition to the QA technologies, this task will contribute to the development of a semantic representation, context understanding, information credibility, automated summarization, and dialog systems.

2 Related Work

Fake News Challenge¹² and CLEF-2018 Fact Checking Lab¹³ are shared tasks dealing with political information. Fake News Challenge conducted the Stance Detection task estimating the relative perspective (or stance) of two pieces of text relative to a topic, claim or issue. CLEF-2018 Fact Checking Lab conducted the Check-worthiness and Factuality tasks. Figure 1 shows a comparison with the related shared tasks.

¹² http://www.fakenewschallenge.org/

¹³ http://alt.gcri.org/clef2018-factcheck/

かと、 地震、津波の被害想定の検討や防災対策の総点検、そして東京の総合防災力をさらに高める取り組みが必要だと考えますが、知事の見解を伺います

Overview of the NTCIR-14 QA Lab-PoliInfo Task

3

020 行
030 行
030 行
050 行
050 行
060 行
080 行
090 行
110 行
120 行
130 行
140 行
150 行
170 行
180 行
190 行
200 行
210 行
220 行
240 行
240 行 ,… 私たちは、この結果を尊重するとともに、もう1方の公選によって私たちに付託された都民の期待を踏まえ、今後も都民の生活を第1とする都政の実現。 ついて伺います。 揺れが東日本一帯を襲うとともに、大津波、海砂を巻き込んだ黒く重い海水の塊が太平洋沿岸の防波 ル。 格納容器が損傷して、放射性物質が広範に拡散しました。 274行目 5. なるこは被災害が取り組化へき課題はは損し、日々別や地域ととに状況が変化しております。 現地のニースを約翰に定路し、選叉地、被対電が選化の夢とする支援に今後とも誘動して収り置化できた考えますが、影響の見解を何し、 た。即にはは編集のとの自己主義指し、ときたが日本の回路機のであるが物管が出来るとに関係されておしていることもいます。 を関いる機能があるといる自己主義をは、これが日本の回路をのまたが特定が出来るとに関係されておしていることもいます。 最後は、異知ら絶撃での生活が不安であり、特に高機をの方々については、引きこもりが忘にるなど、孤立化も思念されます。 も 特別にの部屋はでき、自治会の目さんで運搬を影響を参与し、福金での共通の影響で寄り上がりまく。 したがかり自心ともです場でもあると三部派を保証し、避難時間とや地域との支援機を参加することを求められております。 ・ 機能も含めた他等の体制を名の中が大変複響を対して大変機能、ドロスの支援機を参加することを求められております。 と考えます。 コミュニティにも配慮した避難者に対する支援の取り組みを行っていくべきと考えますが、都の見解を何います。 283行目 290 f7 300 f7 310 f7 320 f7 質問3 質問4 は、既に江戸期の地震の実例を盛り込み、地域防災計画の策定や液水想定を行っています。 江戸期に三連動地震による大津液、これに続く暴風雨や富士山頃火による複合災害が起きており、過去の災害分析からも改めて被害想定を研究 J下議員 質問5· 頂線やライフラインの耐震化、減災化のさらなる推進も必要です。 発事故を踏まえるのであれば、近い将来必ず起きるといわれている東海地震による静岡県浜岡原発事故リスクをも想定した放射能対策も行わなければなり 330 行 質問7

Fig. 2. Example of the plenary minutes of the Tokyo Metropolitan Assembly

3 Japanese Regional Assembly Minutes Corpus

Kimura et al.[4] constructed the Japanese Regional Assembly Minutes Corpus that collects minutes of plenary assemblies in 47 prefectures of Japan from April 2011 to March 2015. Figure 2 shows an example of the minutes of the Tokyo Metropolitan Assembly. Japanese minutes resemble a transcript. In the questionand-answer session, a member of assembly asks several questions at a time, and a prefectural governor or a superintendent answers the questions under his/her charge at a time. A speech is too long to understand the contents at a glance; therefore, information access technologies such as QA and automated summarization, will aid in understanding. For the QA Lab-PoliInfo task, we distributed a subset of the corpus, which is narrowed down to the Tokyo Metropolitan Assembly.

Task Description 4

10 行ごと:発言者:ラベル

340 行

質問8

18 東洋石

We designed the segmentation, summarization and classification tasks. We put the tasks at the elemental technologies of information credibility or fact-checking for political information systems. Figure 3 shows a relation of the tasks. The segmentation task aims to find primary information corresponding to the given secondary information. The summarization task aims to generate brief texts considering argument structure such as questions and answers. The classification task aims to find pros and cons of a political topic and present their fact-checkable reasons. We preliminarily conducted the tasks at dry run. We discussed the

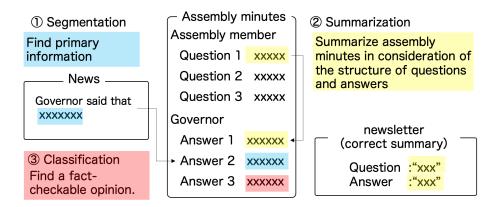


Fig. 3. Relation of the three tasks

results with participants via two round table meetings, and refined the tasks for Formal run. Only the Japanese task was conducted because we could not prepare minutes in other languages.

4.1 Segmentation Task

For the Segmentation task, the minutes of the Tokyo Metropolitan Assembly from April 2011 to March 2015 and a summary of a speech of a member of assembly described in Togikai dayori¹⁴, a public relations paper of the Tokyo Metropolitan Assembly are given. The participants find the corresponding original speech from the minutes and answer positions of the first and last sentences of the found speech. As an evaluation measure, we used recall R_{seq} , precision P_{seg} and F-measure F_{seg} of concordance of the first and last sentences to the gold standard data. They were calculated using the following expressions:

$$R_{seg} = \frac{N_{cp}}{N_{gsp}} \tag{1}$$

$$P_{seg} = \frac{N_{cp}}{N_{sp}} \tag{2}$$

$$R_{seg} = \frac{N_{cp}}{N_{gsp}}$$

$$P_{seg} = \frac{N_{cp}}{N_{sp}}$$

$$F_{seg} = \frac{2R_{seg}P_{seg}}{R_{seg} + P_{seg}}$$

$$(1)$$

$$(2)$$

where N_{cp} is the number of the first and last sentences of which the position is in concord with the gold standard position, N_{gsp} is the number of the gold standard positions; and N_{sp} is the number of sentence positions the participants submitted.

- Dry run

https://www.gikai.metro.tokyo.jp/newsletter/ (in Japanese)

Table 1. Data fields used in the Segmentation task

Field name	Explanation	Dry run	Formal run
ID	Identification code	0	0
Prefecture	Prefecture name		0
date	According to the Japanese calendar		0
Meeting	According to Togikai dayori		0
MainTopic	According to Togikai dayori		0
SubTopic	According to Togikai dayori		0
Speaker	Name of member of assembly		-
Summary	Description in Togikai dayori		-
QuestionSpeaker	Name of member of assembly	-	0
QuestionSummary	Description in Togikai dayori	-	0
AnswerSpeaker	Name of member of assembly	-	0
AnswerSummary	Description in Togikai dayori	-	0
StartingLine	Answer section		-
EndingLine	Answer section		-
QuestionStartingLine	Answer section	-	0
QuestionEndingLine	Answer section	-	0
AnswerStartingLine	Answer section	-	0
AnswerEndingLine	Answer section	_	\cap

Input: the minutes and a summary of a speech of member of assembly **Output**: the first and last sentences of the original speech corresponding to the summary

Evaluation: recall, precision, and F-measure of the concordance rate of the first and the last sentences

In the round table meetings after the dry run, the participants reported that other sentences meant almost the same as the gold standard. We distinguished them, by refining the input of a single speech to a pair of question and answer speeches for the formal run.

- Formal run

Input: the minutes and a pair of summaries of a question and the answer of a member of assembly

Output: the first and the last sentences of the original speech corresponding to each summary

Evaluation: recall, precision, and F-measure of the concordance rate of the first and last sentences

4.2 Summarization Task

For the summarization task, a speech of a member of assembly and the limit length of summary are given. The participants generated a summary corresponding to the speech within the limit length. As an evaluation measure, we used the

Table 2. Data fields used in the summarization task

Field name	Explanation	Dry run	Formal run
ID	Identification code	0	0
Prefecture	Prefecture name		
date	According to the Japanese calendar		
Meeting	According to Togikai dayori		
Speaker	Name of member of assembly		
StartingLine	The number of first sentence		
EndingLine	The number of last sentence		
MainTopic	According to Togikai dayori		
SubTopic	According to Togikai dayori		
Summary	Answer section		
Length	Limit length		
Source	Speech of member of assembly		

scores in the ROUGE[5] family and the scores of the quality questions by the participants. The ROUGE family means ROUGE-N1, -N2, -N3, -N4, -L, -SU4, and -W1.2. The quality questions were assessed by a three-grade evaluation (i.e., A to C) from viewpoints of content, formedness and total. However, for the content evaluation, we prepared an extra grade X because a summary that does not include contents of gold standard data may be acceptable. The quality question score QQ(v) from viewpoint v was calculated using the following expressions:

$$QQ(v) = \frac{\sum_{s \in S} g(s, v)}{|S|} \tag{4}$$

$$QQ(v) = \frac{\sum_{s \in S} g(s, v)}{|S|}$$

$$g(s, v) = \begin{cases} 2 & (gradeA) \\ 1 & (gradeB) \\ 0 & (gradeC) \\ a & (gradeX) \end{cases}$$
(4)

where S is a set of summaries the participants assessed, and a is a constant representing whether acceptable summaries that are different from the gold standard summary are regarded as correct or not. If such summaries are regraded as correct, a is 2; otherwise, a is 0.

- Dry run & formal run

Input: a speech of a member of assembly in the minutes and a limit length of the summary

Output: a summary corresponding to the speech

Evaluation: ROUGE scores and participants assessment in terms of content, formedness and total.

Table 3. Data fields used in Classification task

Field name	Explanation	Dry run	Formal run
ID	Identification code	0	0
Topic	Political topic	\circ	\circ
Utterance	A sentence in the minutes	0	\circ
Relevance	Answer section	-	\circ
Fact-checkability	Answer section	-	0
Stance	Answer section	-	
Class	Answer section	\circ	\circ

Classification Task

For the classification task, a political topic, such as "The Tsukiji Market should move to Toyosu." and a sentence in the minutes are given. The participants classify the sentence into the following three classes: support with fact-checkable reasons (S), against with fact-checkable reasons (A), and other (O). As evaluation measures, we used accuracy of all classes A. Then, recall $R_{cla}(c)$, precision $P_{cla}(c)$ and F-measure $F_{cla}(c)$ were used for each class c.

$$A = \frac{N_{cc}}{N_{ca}} \tag{6}$$

$$R_{cla}(c) = \frac{N_{cc}(c)}{N_{gsc}(c)} \tag{7}$$

$$P_{cla}(c) = \frac{N_{cc}(c)}{N_{ec}(c)} \tag{8}$$

$$A = \frac{N_{cc}}{N_{ca}}$$

$$R_{cla}(c) = \frac{N_{cc}(c)}{N_{gsc}(c)}$$

$$P_{cla}(c) = \frac{N_{cc}(c)}{N_{sc}(c)}$$

$$F_{cla}(c) = \frac{2R_{cla}(c)P_{cla}(c)}{R_{cla}(c) + P_{cla}(c)}$$

$$(6)$$

$$(7)$$

$$(8)$$

$$(9)$$

where N_{acc} is the number of sentences of which the classified class is in concord with the gold standard class; N_{asc} is the number of all sentences, $N_{cc}(c)$ is the number of sentences, of which the gold standard class is c, that is classified into $c, N_{qsc}(c)$ is the number of sentences of which the gold standard class is c, and $N_{sc}(c)$ is the number of sentences classified into c.

- Dry run

Input: a political topic and a sentence in the minutes

Output: a class (support with fact-checkable reasons, against with factcheckable reasons or other)

Evaluation: accuracy of all classes, recall of each class, precision of each class and F-measure of each class.

In the round table meetings after Dry run, we discussed basic factors of classification with participants, and agreed that the factors were relevance, factcheckability and stance. The relevance means whether or not a given sentence

refer to a given topic. The fact-checkability means whether or not the sentence contains fact-checkable reasons. The stance means whether or not a speaker of the sentence agrees on the topic. However, we prepared the third stance, other (O), if a speaker stands neutral or has no relation to the topic. For Formal run, we refined the output to the factors besides class.

- Formal run

Input: a political topic and a sentence in the minutes

Output: a relevance (existance or absence), a fact-checkability (existance or absence), a stance (agree, disagree or other) and a class (support with fact-checkable reasons, against with fact-checkable reasons or other)

Evaluation: accuracy of all classes, recall of each class, precision of each class and F-measure of each class.

4.4 Schedule

The NTCIR-14 QA Lab-PoliInfo task has been run according to the following timeline:

February 20, 2018: QA Lab-PoliInfo Kickoff Meeting

March 20, 2018: NTCIR-14 Kickoff Event April 19, 2018: 1st round table meeting May 31, 2018: 2nd round table meeting

June 19, 2018: Dataset release

Dry Run

July 30, 2018: Task Registration Due for Dry Run

August 6 - 9, 2018: Dry Run (Segmentation & Classification Tasks)

August 13 - 16, 2018: Dry Run (Summarization Task)

August 30, 2018: 3rd round table meeting October 29, 2018: 4th round table meeting

Formal Run

November 19, 2018: Task Registration Due for Formal Run (This is not required for Dry Run participants)

November 26 - 29, 2018: Formal Run (Segmentation & Classification Tasks)

December 3 - 6, 2018: Formal Run (Summarization Task)

NTCIR-14 CONFERENCE

February 1, 2019: Evaluation Result Release

February 1, 2019: Task overview paper release (draft)

March 15, 2019: Submission due of participant papers

May 1, 2019 Camera-ready participant paper due

June 10-13, 2019: NTCIR-14 Conference & EVIA 2019

9

Table 4. Active participating teams

Team ID	Organization
FU01*	Fukuoka University
FU02*	Fukuoka University
KitAi	Kyushu Institute of Technology
TTECH	Tokyo Institute of Technology
nami	Hitachi, Ltd.
nagoy	Nagoya University
akbl	Toyohashi University of Technology
ibrk	Ibaraki University
RICT	Ricoh Company, Ltd.
STARS	Hokkaido University
tmcit	Tokyo Metropolitan College of Industrial Technology
KSU	Kyoto Sangyo University
CUTKB	University of Tsukuba
LisLb	University of Tokyo
TO^*	Task Organizers

^{*}Task organizer(s) are in the team

5 Participation

Sixteen teams were registered, but only 15 teams (Table 4) participated.

6 Submissions

Table 5 shows the number of submitted runs (119 runs from 15 teams).

6.1 Dry Run

For Dry Run, 36 runs from 12 teams were submitted in total. For Segmentation task, 16 runs from 5 teams were submitted. For Summarization task, 6 runs from 5 teams were submitted. For Classification task, 14 runs from 8 teams were submitted.

6.2 Formal Run

For Dry run, 83 runs from 15 teams were submitted in total. For Segmentation task, 24 runs from 5 teams were submitted. For Summarization task, 14 runs from 7 teams were submitted. For Classification task, 45 runs from 11 teams were submitted.

Table 5. Number of submitted runs

Team ID		Dry run			Formal run	
	Segmentation	Summarization	Classification	Segmentation	Summarization	Classification
FU01	-	-	1	-	-	3
FU02	-	-	1	-	-	2
KitAi	-	-	-	-	2	-
TTECH	-	1	4	-	1	10
nami	11	-	-	11	-	-
nagoy	-	1	-	-	1	-
akbl	1	2	1	3	2	1
ibrk	-	-	1	-	-	2
RICT	1	-	1	5	-	7
STARS	-	-	4	-	-	4
tmcit	-	-	1	-	-	6
KSU	2	1	-	4	6	8
CUTKB	-	-	-	-	-	1
LisLb	-	-	-	-	1	1
ТО	1	1	-	1	1	-
Sum	16	6	14	24	14	45

7 Result

7.1 Dry Run

Table 6 shows the results of Segmentation task. The best recall was 0.703 of akbl-1, the best precision was 0.859 of KSU-1, and the best F-measure was 0.570 of RICT-01.

Table 7 and 8 show the quality question scores and the ROUGE scores, respectively. Accordingly, akbl-01 achieved the best content scores and the best total score, regardless of the extra grade. The best formed score was 1.664 of akbl-02. For all ROUGE scores, akbl-01 achieved the best scores.

Table 9 shows the results of Classification task. The best accuracy (i.e. 0.823) was achieved by albl-01 and all STARS. For support, the best recall was 0.811 of FU01-01, the best precision was 0.400 of TTECH-03, and the best F-measure was 0.455 of TTECH-02. For against, the best recall was 0.708 of TTECH-02, the best precision was 0.375 of akbl-01, and the best F-measure was 0.314 of TTECH-03. For other, the best recall was 1.000 of ibrk-01 and all STARS, the best precision was 0.930 of TTECH-02, and the best F-measure was 0.903 of ibrk-01 and all STARS.

7.2 Formal Run

Table 10 shows the results of Segmentation task. The best recall was 1.000 of nami-11, the best precision was 0.940 of nami-01, and the best F-measure was 0.895 of RICT-01.

Table 11 and 12 show the quality question scores and the ROUGE scores, respectively. When extra grade was regarded as incorrect, the best content score was 0.886 of nagoy-01. When extra grade was regarded as correct, the best

11

Table 6. result of Segmentation task in Dry run

	R	P	F
nami-01	0.464 (311/670)	0.342 (311/909)	0.394
nami-02	0.458 (307/670)	0.339 (307/905)	0.390
nami-03	0.391 (262/670)	0.373 (262/702)	0.382
nami-04	0.479 (321/670)	0.304 (321/1,057)	0.372
nami-05	0.473 (317/670)	0.301 (317/1,053)	0.368
nami-06	0.396 (265/670)	0.354 (265/748)	0.374
nami-07	0.509 (341/670)	0.283 (341/1,203)	0.364
nami-08		0.281 (337/1,199)	0.361
nami-09	0.416 (279/670)	0.342 (279/815)	0.375
nami-10	0.370 (248/670)	0.420 (248/591)	0.393
nami-11	0.582 (390/670)	0.270 (390/1,444)	0.369
akbl-01	0.703 (471/670)	0.390 (471/1,207)	0.502
RICT-01	0.484 (324/670)	0.694 (324/467)	0.570
KSU-01	0.399 (267/670)	0.859 (267/311)	0.545
KSU-02	0.391 (262/670)	0.856 (262/306)	0.537
TO-01	0.267 (179/670)	0.056 (179/3,195)	0.093

Table 7. quality question scores of Summarization task in Dry run

	con	tent	formed	total
	X=0	X=2		
	0.556			0.532
nagoy-01	0.156	0.204	0.856	0.168
akbl-01	0.644	1.036	1.656	0.784
akbl-02	0.608	0.968	1.664	0.744
KSU-01	0.000	0.000	0.064	0.000
TO-01	0.276	0.516	1.396	0.340
average	0.373	0.588	1.134	0.428

content score was 1.134 of KitAi-01. The best formed score was 1.955 of KSU-01, and the best total score was 0.912 of KitAi-01. For ROUGE scores, nagoy-01 achieved the best scores except some cases.

Table 13 shows the results of Classification task. The best accuracy was 0.942 of TTECH-07, -08 and -10. For support, the best recall was 0.731 of FU01-02, the best precision was 0.738 of KSU-03, -04, -07 and -08, and the best F-measure was 0.256 of TTECH-02. For against, the best recall was 1.000 of CUTKB-04, the best precision was 0.207 of TTECH-05, and the best F-measure was 0.216 of TTECH-05. For other, the best recall was 1.000 of TTECH-07, -08, -10, RICT-01, -05, -06 and STARS-01, the best precision was 0.947 of TTECH-02 and -05, and the best F-measure was 0.970 of TTHECH-07, -08 and -10.

8 Outline of the systems

We briefly describe the characteristic aspects of the participating groups systems and their contribution below.

Table 8. ROUGE scores of Summarization task in Dry run

					recall						F-	measu	ire		
		N1	N2	N3	N4	L	SU	W1.2	N1	N2	N3	N4	L	SU4	W1.2
	TTECH-01	0.363	0.114	0.072	0.045	0.322	0.157	0.161	0.261	0.075	0.044	0.027	0.226	0.102	0.148
	nagoy-01	0.131	0.031	0.013	0.003	0.115	0.047	0.059	0.116	0.021	0.009	0.003	0.101	0.038	0.063
surface	akbl-01	0.388	0.145	0.092	0.060	0.351	0.182	0.173	0.317	0.114	0.071	0.046	0.283	0.141	0.180
form	akbl-02	0.373	0.127	0.076	0.046	0.335	0.166	0.165	0.307	0.100	0.059	0.036	0.272	0.130	0.172
	KSU-01	0.106	0.007	0.001	0.000	0.095	0.024	0.048	0.135	0.009	0.001	0.000	0.121	0.031	0.070
	TO-01	0.207	0.051	0.022	0.013	0.186	0.070	0.093	0.189	0.046	0.021	0.013	0.167	0.062	0.105
	TTECH-01														
	nagoy-01	0.136	0.036	0.019	0.006	0.121	0.052	0.063	0.119	0.024	0.011	0.005	0.103	0.040	0.066
stem	akbl-01	0.405	0.164	0.107	0.073	0.367	0.200	0.182	0.330	0.129	0.082	0.056	0.295	0.154	0.190
	akbl-02	0.392	0.146	0.091	0.058	0.353	0.185	0.175	0.321	0.115	0.071	0.045	0.286	0.143	0.182
	KSU-01	0.104	0.007	0.001	0.000	0.096	0.024	0.048	0.133	0.009	0.001	0.000	0.122	0.031	0.071
	TO-01	0.208	0.056	0.024	0.013	0.185	0.072	0.094	0.188	0.048	0.023	0.013	0.166	0.063	0.105
	TTECH-01	0.207	0.102	0.050	0.027	0.204	0.140	0.139	0.148	0.064	0.029	0.013	0.145	0.070	0.118
	nagoy-01	0.075	0.025	0.002	0.000	0.075	0.053	0.054	0.049	0.014	0.002	0.000	0.049	0.018	0.040
content	akbl-01	0.263	0.124	0.072	0.049	0.255	0.162	0.171	0.204	0.094	0.053	0.028	0.196	0.100	0.156
word	akbl-02	0.243	0.104	0.051	0.028	0.235	0.141	0.157	0.188	0.079	0.038	0.014	0.181	0.087	0.142
	KSU-01	0.009	0.000	0.000	0.000	0.009	0.001	0.006	0.010	0.000	0.000	0.000	0.010	0.001	0.007
	TO-01	0.088	0.017	0.010	0.000	0.087	0.034	0.059	0.074	0.017	0.010	0.000	0.074	0.026	0.058

The FU01 team tackled the classification task. For the Classification task, they recognized the relevance and the fact-checkability using words in the topic, and recognized the stance using the sentiment polarity dictionary.

The FU02 team tackled the classification task. For the Classification task, they recognized the relevance using words in the topic. The fact-chckablity was recognized by prepared clue expressions, and the stance was recognized by the fastText.

The KitAi team tackled the Summarization task. For the Summarization task, they took an approach of sentence extraction. They constructed pseudo training data based on five measures, and estimated the significance of sentences using SVR.

The TTECH team tackled the Summarization and the Classification tasks. For the Summarization task, they used sentence extraction based on redundancy-constrained knapsack problem. For the Classification task, they used SVM classifier taking account of a before- and an after-sentences as the context.

The nami team tackled the Segmentation task. For the Segmentation task, they proposed query reconstruction based on confidence and context information

The nagoy team tackled the Summarization task. For the Summarization task, they used sentence extraction by random forest and sentence compression by heuristics and word frequency.

The akbl team tackled all tasks. For the Segmentation and the Summarization tasks, they used heuristics and TF-IDF values. For the Classification task, they used LSTM classifier and one-hot encoding.

Table 9. result of Classification task in Dry run

		s	support			agains	t		other	
	A	R	P	F	R	P	F	R	P	F
FU01-01	0.326	0.811	0.130	0.224	0.292	0.292	0.292	0.265	0.833	0.402
FU02-01	0.410	0.351	0.105	0.105	0.292	0.103	0.152	0.428	0.807	0.559
TTECH-01	0.642	0.405	0.278	0.330	0.667	0.200	0.308	0.671	0.905	0.771
TTECH-02	0.494	0.541	0.392	0.455	0.708	0.113	0.195	0.470	0.930	0.624
TTECH-03	0.712	0.270	0.400	0.322	0.583	0.215	0.314	0.781	0.870	0.823
TTECH-04	0.497	0.514	0.373	0.432	0.583	0.103	0.175	0.488	0.879	0.628
akbl-01	0.762	0.216	0.205	0.210	0.125	0.375	0.188	0.887	0.845	0.865
ibrk-01	0.823	0.000	NaN	NaN	0.000	NaN	NaN	1.000	0.823	0.903
RICT-01	0.820	0.000	NaN	NaN	0.042	0.333	0.075	0.993	0.824	0.901
STARS-01	0.823	0.000	NaN	NaN	0.000	NaN	NaN	1.000	0.823	0.903
STARS-02	0.823	0.000	NaN	NaN	0.000	NaN	NaN	1.000	0.823	0.903
STARS-03	0.823	0.000	NaN	NaN	0.000	NaN	NaN	1.000	0.823	0.903
STARS-04	0.823	0.000	NaN	NaN	0.000	NaN	NaN	1.000	0.823	0.903
tmcit-01	0.727	0.000	0.000	NaN	0.167	0.087	0.114	0.869	0.834	0.851

The ibrk team tackled the Classification task. For the Classification task, they recognized the relevance and the fact-checkability using SVM classifier and one-hot encoding, and recognized the stance using the sentiment polarity dictionary.

The RICT team tackled the Segmentation and the Summarization tasks. For the Segmentation task, they segmented the whole minute in advance, and retrieved appropriate segments using the Elasticsearch. For the Classification task, they solved the relevance and the stance as anomaly detection problem, and the fact-checking was recognized by LSTM or SVM classifier.

The STARS team tackled the Classification task. For the Classification task, they recognized the relevance, the fact-checkability, and the stance using BiL-STM classifier and word-embedding. They also recognized the relevance using similarity between word vectors and so on.

The tmcit team tackled the Classification task. For the Classification task, they recognized the relevance based on cosine similarity. The fact-checkability was recognized by decision tree classifier, and the stance was recognized SVM classifier.

The KSU team tackled all tasks except the Classification task in the dry run. For the Segmentation task, they retrieved a relevant document, and segmented the document using heuristics and word frequency. For the Summarization task, they used LSTM encoder-decoder for abstractive summarization taking account of the subtopic. For the Classification task, they recognized the relevance using byte pair encoding, and recognized the fact-checking using LSTM classifier. The stance was recognized by SVM classifier using frequent words and N-gram.

The CUTKB team tackled the Classification task. For the Classification task, they used various classifiers such as LSTM, CNN, BERT, and their combinations. They also conducted a comparative study of them.

The LisLb team tackled the Summarization and the Classification tasks. For the Summarization task, they used rules according to Q&A pattern in the minutes. For the Classification task, they used an SVM classifier and word embedding.

Table 10. result of Segmentation task in Formal run

	R	P	F
nami-01	0.814(1,433/1,761)	0.940 (1,433/1525)	0.872
nami-02	$0.864 \ (1,521/1,761)$	0.851 (1,521/1,788)	0.857
nami-03	0.984 (1,733/1,761)	0.499 (1,733/3,475)	0.662
nami-04	0.639 (1,125/1,761)	0.805 (1,125/1,398)	0.712
nami-05	0.553 (973/1,761)	0.931 (973/1,045)	0.694
nami-06	0.655 (1,153/1,761)	0.657 (1,153/1,754)	0.656
nami-07	0.797 (1,404/1,761)	0.933 (1,404/1,505)	0.860
nami-08	0.831 (1,464/1,761)	0.932 (1,464/1,570)	0.879
nami-09	0.875 (1,541/1,761)	0.843 (1,541/1,827)	0.859
nami-10	0.993 (1,749/1,761)	0.464 (1,749/3,769)	0.632
nami-11	<u>1.000</u> (1,761/1,761)	0.112 (1,761/15,765)	0.201
akbl-01	0.768 (1,352/1,761)	0.538 (1,352/2,515)	0.633
akbl-02	0.847 (1,492/1,761)	0.455 (1,492/3,282)	0.592
akbl-03	$0.656 \ (1,155/1,761)$	0.519 (1,155/2,227)	0.580
RICT-01	0.882 (1,554/1,761)	0.909 (1,554/1,709)	0.895
RICT-02	0.856 (1,507/1,761)	0.889 (1,507/1,695)	0.872
RICT-03	$0.853 \ (1,503/1,761)$	0.780 (1,503/1,926)	0.815
RICT-04	0.780 (1,374/1,761)	0.746 (1,374/1,842)	0.763
RICT-05	0.936 (1,648/1,761)	0.712 (1,648/2,314)	0.809
KSU-01	0.779(1,372/1,761)	0.243 (1,372/5,643)	0.370
KSU-02	0.759 (1,337/1,761)	0.268 (1,337/4,998)	0.396
KSU-03	0.820 (1,444/1,761)	0.661 (1,444/2,185)	0.732
KSU-04	0.797 (1,403/1,761)	0.922 (1,403/1,521)	0.855
TO-01	0.354 (623/1,761)	0.898 (623/694)	0.508

9 Conclusion

We described the overview of the NTCIR-14 QA Lab-PoliInfo task. The goal is realizing complex real-world question answering (QA) technologies, to show summaries of the opinions of assembly members and the reasons and conditions for such opinions, from Japanese regional assembly minutes. We conducted in a dry run and a formal run, which are including the segmentation, summarization, and classification tasks. Fifteen teams submitted 119 runs in total. We described the task description, the collection, the participation and the results.

References

- 1. Pariser, E.: The Filter Bubble: What the Internet Is Hiding from You. Penguin Group (2011)
- 2. Shibuki, H., Sakamoto, K., Kano, Y., Mitamura, T., Ishioroshi, M., Itakura, K. Y., Wang, D., Mori, T., Kando, N.: Overview of the NTCIR-11 QA-Lab Task. In: Proceedings of the 11th NTCIR Conference (2014)
- 3. Shibuki, H., Sakamoto, K., Ishioroshi, M., Fujita, A., Kano, Y., Mitamura, T., Mori, T., Kando, N.: Overview of the NTCIR-12 QA Lab-02 Task. Proceedings of the 12th NTCIR Conference (2016)
- 4. Kimura, Y., Takamaru, K., Tanaka, T., Kobayashi, A., Sakaji, H., Uchida, Y., Ototake, H., Masuyama, S.: Creating Japanese Political Corpus from Local Assembly Minutes of 47 Prefectures. In: Proceedings of Coling 2016 workshop, The 12th Workshop on Asian Language Resources, 78–85 (2016)

Table 11. quality question scores in Formal run (max is 2)

		all-	topic			singl	e-topic			multi-topic			
	cont	tent	formed	total	con	tent	formed	total	con	tent	formed	total	
	X=0	X=2			X=0	X=2			X=0	X=2			
KitAi-01	0.856	1.134	1.732	0.912	0.953	1.170	1.660	0.995	0.745	1.092	1.815	0.815	
KitAi-02	0.788	1.035	1.308	0.667	0.849	1.028	1.340	0.722	0.717	1.043	1.272	0.603	
TTECH-01	0.290	0.644	1.783	0.402	0.274	0.575	1.755	0.401	0.310	0.723	1.815	0.402	
nagoy-01	0.886	1.104	1.619	0.899	0.953	1.179	1.642	1.028	0.810	1.016	1.592	0.750	
akbl-01	0.722	1.005	1.833	0.826	0.708	1.009	1.844	0.849	0.739	1.000	1.821	0.799	
akbl-02*	0.707	1.000	1.837	0.793					0.707	1.000	1.837	0.793	
KSU-01	0.043	0.043	1.955	0.048	0.052	0.052	1.934	0.057	0.033	0.033	1.978	0.038	
KSU-02	0.076	0.121	1.745	0.071	0.080	0.156	1.722	0.104	0.071	0.082	1.772	0.033	
KSU-03	0.091	0.157	1.715	0.104	0.104	0.179	1.731	0.156	0.076	0.130	1.696	0.043	
KSU-04	0.111	0.167	1.419	0.093	0.118	0.193	1.420	0.132	0.103	0.136	1.418	0.049	
KSU-05	0.048	0.078	1.692	0.048	0.057	0.085	1.726	0.057	0.038	0.071	1.652	0.038	
KSU-06	0.078	0.169	1.535	0.091	0.085	0.151	1.542	0.094	0.071	0.190	1.527	0.087	
LisLb-01	0.720	0.942	1.237	0.591	0.722	0.920	1.349	0.684	0.717	0.967	1.109	0.484	
TO-01	0.504	0.846	1.763	0.551	0.464	0.794	1.778	0.521	0.550	0.905	1.746	0.586	
average	0.423	0.603	1.655	0.435	0.387	0.535	1.532	0.414	0.406	0.599	1.646	0.394	

*akbl-02 did not submit single-type.

15

5. Lin, C.-Y. ROUGE: A Package for Automatic Evaluation of Summaries. In: Proceedings of the ACL-04 workshop 8 $(2004)\,$

Table 12. ROUGE scores in Formal run (all-topic)

		recall								F-measure							
		N1								N2	N3	N4	L	SU4			
	KitAi-01	0.440	0.185	0.121	0.085	0.375	0.217	0.179	0.357	0.147	0.096	0.067	0.299	0.168	0.188		
	KitAi-02	0.390	0.174	0.113	0.078	0.320	0.200	0.154	0.343	0.154	0.101	0.069	0.281	0.173	0.176		
	TTECH-01	0.278	0.060	0.035	0.020	0.216	0.092	0.096	0.240	0.055	0.031	0.018	0.187	0.079	0.111		
	nagoy-01	0.459	0.200	0.131	0.089	0.394	0.229	0.186	0.361	0.151	0.097	0.064	0.305	0.169	0.192		
	akbl-01	0.400	0.173	0.113	0.076	0.345	0.189	0.157	0.361	0.156	0.102	0.068	0.310	0.167	0.185		
	akbl-02	0.326	0.124	0.080	0.057	0.269	0.147	0.112	0.320	0.119	0.077	0.055	0.262	0.141	0.144		
Surface	KSU-01								0.210								
Form	KSU-02	0.185	0.043	0.021	0.014	0.167	0.063	0.080	0.230	0.056	0.027	0.017	0.209	0.080	0.116		
	KSU-03							0.075					0.192				
	KSU-04								0.219								
	KSU-05	0.227	0.029	0.010	0.002	0.195	0.064	0.089	0.231	0.029	0.010	0.003	0.196	0.065	0.110		
	KSU-06	0.221	0.038	0.013	0.004	0.187	0.065	0.086	0.230	0.038	0.012	0.004	0.192	0.067	0.108		
	LisLb-01								0.226								
	TO-01	0.267	0.093	0.061	0.045	0.230	0.117	0.105	0.272	0.086	0.052	0.036	0.233	0.110	0.133		
	KitAi-01	0.458	0.199	0.134	0.096	0.389	0.234	0.188	0.373	0.159	0.106	0.075	0.311	0.182	0.199		
	KitAi-02								0.351								
	TTECH-01	0.289	0.064	0.037	0.022	0.222	0.097	0.099	0.251	0.058	0.033	0.019	0.193	0.084	0.114		
	nagoy-01								0.377								
	akbl-01								0.375								
	akbl-02								0.333								
Stem	KSU-01							0.071					0.197				
	KSU-02								0.233								
	KSU-03								0.217								
	KSU-04								0.222								
	KSU-05								0.236								
	KSU-06								0.235								
	LisLb-01								0.235								
	TO-01								0.277								
	KitAi-01								0.224								
	KitAi-02								0.214								
	TTECH-01								0.076								
	nagoy-01		0.164										0.239				
	akbl-01		0.113										0.216				
	akbl-02								0.188								
Content	I I								0.059								
Word	KSU-02								0.083								
	KSU-03								0.050								
	KSU-04								0.064								
	KSU-05							0.041					0.057				
	KSU-06								0.051								
	LisLb-01								0.140								
	TO-01	0.116	0.055	0.035	0.012	0.111	0.056	0.070	0.106	0.042	0.023	0.011	0.101	0.042	JU.076		

17

 ${\bf Table~13.}~{\rm result~of~Classification~task~in~Formal~run~(Class~salutariness)}$

		s	uppor	t	í	agains	t	other				
	A	R	\dot{P}	F	R	P	F	R	P	F		
FU01-01	0.624	0.417	0.057	0.100	0.076	0.041	0.053	0.648	0.938	0.766		
FU01-02	0.373	0.731	0.057	0.106	0.183	0.045	0.072	0.362	0.943	0.523		
FU01-03	0.909	0.089	0.164	0.115	0.008	0.020	0.011	0.970	0.936	0.953		
FU02-01	0.842	0.027	0.040	0.032	0.095	0.033	0.049	0.899	0.933	0.916		
FU02-02	0.840	0.073	0.063	0.068	0.069	0.030	0.042	0.895	0.933	0.914		
TTECH-01	0.923	0.046	0.163	0.072	0.015	0.133	0.027	0.987	0.935	0.960		
TTECH-02	0.896	0.260	0.252	0.256	0.221	0.199	0.209	0.943	0.947	0.945		
TTECH-03	0.919	0.116	0.254	0.159	0.069	0.200	0.103	0.978	0.938	0.958		
TTECH-04	0.921	0.043	0.134	0.065	0.015	0.133	0.027	0.985	0.934	0.959		
TTECH-05	0.897	0.251	0.251	0.251	0.225	0.207	0.216	0.944	0.947	0.945		
TTECH-06	0.918	0.132	0.269	0.177	0.080	0.206	0.115	0.976	0.939	0.957		
TTECH-07	0.942	0.000	NaN	NaN	0.000	NaN	NaN	1.000	0.942	0.970		
TTECH-08	0.942	0.000	NaN	NaN	0.000	NaN	NaN	1.000	0.942	0.970		
TTECH-09	0.926	0.000	0.000	NaN	0.000	NaN	NaN	0.982	0.941	0.961		
TTECH-10	0.942	0.000	NaN	NaN	0.000	NaN	NaN	1.000	0.942	0.970		
akbl-01	0.923	0.118	0.344	0.176	0.034	0.097	0.050	0.983	0.939	0.960		
ibrk-01	0.731	0.178	0.063	0.093	0.202	0.045	0.074	0.770	0.934	0.844		
ibrk-02	0.731	0.178	0.063	0.093	0.202	0.045	0.074	0.770	0.934	0.844		
RICT-01	0.933	0.000	NaN	NaN	0.000	NaN	NaN	1.000	0.933	0.965		
RICT-02	0.932	0.002	0.091	0.004	0.004	0.111	0.008	0.998	0.933	0.964		
RICT-03	0.893	0.118	0.145	0.130	0.111	0.117	0.114	0.949	0.940	0.944		
RICT-04	0.894	0.114	0.143	0.127	0.111	0.117	0.114	0.950	0.939	0.944		
RICT-05	0.933	0.000	NaN	NaN	0.000	0.000	NaN	1.000	0.933	0.965		
RICT-06	0.933	0.000	NaN	NaN	0.000	NaN	NaN	1.000	0.933	0.965		
RICT-07	0.932	0.084	0.440	0.141	0.042	0.407	0.076	0.994	0.937	0.965		
STARS-01	0.933	0.000	NaN	NaN	0.000	NaN	NaN	1.000	0.933	0.965		
STARS-02	0.889	0.002	0.002	0.002	0.000	NaN	NaN	0.953	0.933	0.943		
STARS-03	0.889	0.002	0.002	0.002	0.000	NaN	NaN	0.953	0.933	0.943		
STARS-04	0.889	0.002	0.002	0.002	0.000	NaN	NaN	0.953	0.933	0.943		
tmcit-01	0.875	0.282	0.139	0.186	0.000	NaN	NaN	0.925	0.943	0.934		
tmcit-02	0.893	0.239	0.160	0.192	0.000	NaN	NaN	0.946	0.942	0.944		
tmcit-03	0.873	0.296	0.142	0.192	0.000	NaN	NaN	0.922	0.943	0.932		
tmcit-04	0.879	0.319	0.161	0.214	0.000	NaN	NaN	0.928	0.944	0.936		
tmcit-05	0.898	0.267	0.189	0.221	0.000	NaN	NaN	0.950	0.942	0.946		
tmcit-06	0.878	0.292	0.148	0.196	0.000	NaN	NaN	0.927	0.943	0.935		
KSU-01	0.932	0.075	0.579	0.133	0.008	0.056	0.014	0.995	0.937	0.965		
KSU-02	0.932	0.071	0.689	0.129	0.008	0.042	0.013	0.995	0.937	0.965		
KSU-03	0.934	0.071	0.738	0.130	0.008	0.083	0.015	0.998	0.937	0.967		
KSU-04	0.934	0.071	0.738	0.130	0.008	0.083	0.015	0.998	0.937	0.967		
KSU-05	0.932	0.075	0.579	0.133	0.019	0.111	0.032	0.995	0.937	0.965		
KSU-06	0.932	0.071	0.689	0.129	0.019	0.088	0.031	0.995	0.937	0.965		
KSU-07	0.934	0.071	0.738	0.130	0.011	0.100	0.020	0.997	0.937	0.966		
KSU-08	0.934	0.071	0.738	0.130	0.011	0.100	0.020	0.997	0.937	0.966		
CUTKB-04	0.025	0.000	NaN	NaN	1.000	0.025	0.049	0.000	NaN	NaN		
LisLb-01	0.914	0.021	0.065	0.032	0.037	0.080	0.051	0.976	0.935	0.955		

Table 14. detail of Segmentation task in Formal run

		question	answer							
	R	P	F	R	P	F				
nami-01	0.794 (947/1,193)	0.949 (947/998)	0.864	0.856 (486/568)	0.922 (486/527)	0.888				
nami-02	$0.841 \ (1,003/1,193)$	0.819 (1,003/1,224)	0.830	0.912 (518/568)	0.918 (518/564)	0.915				
nami-03	0.977 (1,165/1,193)		0.659	1.000 (568/568)	0.501 (568/1,133)	0.668				
nami-04	0.614 (732/1,193)	0.829 (732/883)	0.705	0.692 (393/568)	0.763 (393/515)	0.726				
nami-05	0.515 (614/1,193)	0.936 (614/656)	0.664	0.632 (359/568)	0.923 (359/389)	0.750				
nami-06	0.637 (760/1,193)	0.631 $(760/1,204)$	0.634	0.692 (393/568)	0.715 (393/550)	0.703				
nami-07	0.791 (944/1,193)	0.949 (944/995)	0.863	$0.810 \ (460/568)$	0.902 (460/510)	0.853				
nami-08	0.820 (978/1,193)	0.938 (978/1,043)	0.875	0.856 (486/568)	0.922 (486/527)	0.888				
nami-09	0.858 (1,023/1,193)	0.810 (1,023/1,263)	0.833	0.912 (518/568)	0.918 (518/564)	0.915				
nami-10	0.990(1,181/1,193)	0.448 (1,181/2,636)	0.617	1.000 (568/568)	$0.501 \ (568/1,133)$	0.668				
nami-11	1.000 (1,193/1,193)	0.087 (1,193/13,684)	0.160	1.000 (568/568)	$0.273 \ (568/2,081)$	0.429				
akbl-01	0.780 (931/1,193)	0.468 (931/1,990)	0.585	0.741 (421/568)	0.802 (421/525)	0.770				
akbl-02	$0.878 \ (1047/1,193)$	0.389 (1,047/2,694)	0.539	0.783 (445/568)	0.757 (445/588)	0.770				
akbl-03	0.638 (761/1,193)	0.439 (761/1,735)	0.520	0.694 (394/568)	0.801 (394/492)	0.743				
RICT-01	0.851 (1,015/1,193)	0.913 (1,015/1,112)	0.881	0.949 (539/568)	0.903 (539/597)	0.925				
RICT-02	0.811 (968/1,193)	0.871 (968/1,111)	0.840	0.949 (539/568)	0.923 (539/584)	0.936				
RICT-03	0.847 (1,010/1,193)	0.759 (1,010/1,331)	0.800	0.868 (493/568)	0.829 (493/595)	0.848				
RICT-04	0.828 (988/1,193)	0.715 (988/1,382)	0.767	0.680 (386/568)	0.839 (386/460)	0.751				
RICT-05	0.935 (1,116/1,193)	0.643 (1,116/1,735)	0.762	0.937 (532/568)	0.919 (532/579)	0.928				
KSU-01	0.835 (996/1,193)	0.192 (996/5,196)	0.312	0.662 (376/568)	0.841 (376/447)	0.741				
KSU-02	0.806 (962/1,193)	0.209 (962/4,603)	0.332	0.660 (375/568)	0.949 (375/395)	0.779				
KSU-03	0.899(1,072/1,193)	0.612 (1,072/1,751)	0.728	0.655 (372/568)	0.857 (372/434)	0.743				
KSU-04	0.866 (1,033/1,193)	0.905 (1,033/1,141)	0.885	0.651 (370/568)	0.974 (370/380)	0.781				
TO-01	0.450 (537/1,193)	0.984 (537/546)	0.618	0.151 (86/568)	0.581 (86/148)	0.240				

 $\textbf{Table 15.} \ \text{correlation coefficients between total score and ROUGE scores}$

	recall							F-measure							
	N1	N2	N3	N4	L	W1.2	SU4	N1	N2	N3	N4	L	W1.2	SU4	
surface form	0.924	0.955	0.964	0.968	0.915	0.953	0.893	0.900	0.942	0.957	0.959	0.852	0.946	0.882	
stem	0.928	0.959	0.968	0.972	0.918	0.956	0.900	0.912	0.950	0.965	0.968	0.866	0.954	0.894	
content word	0.943	0.957	0.948	0.920	0.939	0.952	0.926	0.942	0.963	0.953	0.924	0.937	0.956	0.935	

Table 16. detail of Classification task in Formal run (Rl and FC) $\,$

	relevance								fact-checkability							
		existence absence										absenc	е			
	A	R	P	F	R	P	F	A	R	P	F	R	P	F		
FU01-01	0.706	0.754	0.889	0.816	0.393	0.200	0.265	0.523	0.527	0.376	0.439	0.520	0.668	0.585		
FU01-02	0.706	0.754	0.889	0.816	0.393	0.200	0.265	0.359	0.961	0.352	0.515	0.030	0.580	0.056		
FU01-03	0.825	0.910	0.890	0.900	0.280	0.326	0.301	0.632	0.183	0.450	0.260	0.878	0.662	0.755		
FU02-01	0.865	0.999	0.866	0.928	0.006	0.533	0.011	0.530	0.419	0.359	0.387	0.591	0.650	0.619		
FU02-02	0.865	0.999	0.866	0.928	0.006	0.533	0.011	0.530	0.419	0.359	0.387	0.591	0.650	0.619		
TTECH-01	0.853	0.930	0.903	0.917	0.361	0.445	0.399	0.708	0.422	0.631	0.506	0.865	0.732	0.793		
TTECH-02	0.849	0.922	0.905	0.914	0.377	0.430	0.402	0.661	0.670	0.516	0.583	0.656	0.784	0.714		
TTECH-03	0.835	0.903	0.906	0.904	0.397	0.389	0.393	0.710	0.480	0.617	0.540	0.837	0.746	0.789		
TTECH-04	0.853	0.930	0.903	0.917	0.361	0.445	0.399	0.708	0.417	0.632	0.503	0.867	0.731	0.793		
TTECH-05	0.849	0.924	0.904	0.914	0.368	0.430	0.397	0.659	0.650	0.515	0.574	0.664	0.776	0.716		
TTECH-06	0.834	0.902	0.905	0.904	0.395	0.385	0.390	0.709	0.468	0.617	0.533	0.841	0.743	0.789		
TTECH-07	0.988	1.000	0.988	0.994	0.000	NaN	NaN	0.709	0.335	0.475	0.393	0.855	0.767	0.809		
TTECH-08	0.988	1.000	0.988	0.994	0.000	NaN	NaN	0.686	0.588	0.455	0.513	0.724	0.818	0.768		
TTECH-09	0.988	1.000	0.988	0.994	0.000	NaN	NaN	0.702	0.235	0.444	0.308	0.885	0.748	0.811		
TTECH-10	0.988	1.000	0.988	0.994	0.000	NaN	NaN	0.719	0.176	0.500	0.261	0.931	0.743	0.827		
akbl-01	0.861	0.952	0.895	0.922	0.282	0.476	0.354	0.708	0.438	0.626	0.515	0.857	0.736	0.791		
ibrk-01	0.865	1.000	0.865	0.928	0.000	NaN	NaN	0.646	0.000	NaN	NaN	1.000	0.646	0.785		
ibrk-02	0.865	1.000	0.865	0.928	0.000	NaN	NaN	0.646	0.000	NaN	NaN	1.000	0.646	0.785		
RICT-01	0.857			0.923		0.104	0.015		0.419	0.694	0.522	0.899	0.738	0.811		
RICT-02				0.646				0.729			0.522	0.899		0.811		
RICT-03	0.787	0.827	0.918	0.870	0.528	0.322	0.400	0.729	0.419	0.694	0.522	0.899	0.738	0.811		
RICT-04	0.794	0.836	0.919	0.875	0.524	0.332	0.407	0.729	0.419	0.694	0.522	0.899	0.738	0.811		
RICT-05	0.857	0.990	0.865	0.923	0.008	0.104	0.015	0.621	0.693	0.476	0.564	0.582	0.776	0.665		
RICT-06	0.857	0.990	0.865	0.923	0.008	0.104	0.015	0.724	0.417	0.680	0.517	0.892	0.737	0.807		
RICT-07	1			0.923			0.015	1	0.419				0.738	0.811		
STARS-01	0.865	1.000	0.865	0.928	0.000	NaN	NaN	0.646	0.000	NaN	NaN	1.000	0.646	0.785		
STARS-02				0.928		NaN	NaN		1.000		0.523	0.000	NaN	NaN		
STARS-03				0.928		NaN	NaN	1	1.000		0.523	0.000	NaN	NaN		
STARS-04	0.865			0.928		NaN	NaN	1	1.000		0.523		NaN	NaN		
tmcit-01	0.767				0.463	0.279	0.348	1	0.630		0.562	0.665	0.766	0.712		
tmcit-02	1			0.701				1	0.636				0.768	ı		
tmcit-03	0.767			0.858			0.348		0.636			0.658		0.708		
tmcit-04	1			0.858										0.707		
tmcit-05			0.935				0.327	1		0.504		0.657	0.767	0.708		
tmcit-06				0.858						0.507	0.561		0.766	0.712		
KSU-01				0.866			0.513	1	0.407	0.722	0.521	0.914	1	0.817		
KSU-02				0.866				0.735			0.521			0.817		
KSU-03				0.866				0.735		0.722	0.521			0.817		
KSU-04				0.866				0.735		0.722	0.521			0.817		
KSU-05				0.930				0.735		0.722	0.521		1	0.817		
KSU-06				0.930			0.353	0.735		0.722	0.521		0.738			
KSU-07	1			0.930				1	0.407		0.521		0.738	1		
KSU-08	0.873			0.930			0.353	0.735		0.722	0.521			0.817		
CUTKB-04	1			0.928		NaN	NaN	1	0.523					0.801		
LISLab-01	[0.727]	0.829	0.843	0.836	0.200	0.183	0.191	0.544	0.313	U.366	0.337	0.680	0.627	0.652		

Table 17. result of Classification task in Formal run (stance agreeing)

			agree		d	isagre	e	other				
	A	R	P	F	R	P	F	R	P	F		
FU01-01	0.393	0.739	0.181	0.291	0.199	0.155	0.174	0.353	0.811	0.492		
FU01-02	0.393	0.739	0.181	0.291	0.199	0.155	0.174	0.353	0.811	0.492		
FU01-03	0.734	ı	0.243	0.139	0.072	0.152	0.097	0.915	0.789			
FU02-01	0.632	0.079	0.169	0.107	0.246	0.120	0.161	0.768	0.783	0.775		
FU02-02	0.633	0.112	0.153	0.129	0.117	0.080	0.095	0.779	0.779			
TTECH-01	0.782	0.249	0.466	0.325	0.188	0.578	0.284	0.938	0.814	0.872		
TTECH-02	0.772	0.355	0.476	ı	0.354	0.427	0.387	0.888	0.836			
TTECH-03	0.774	0.295	0.490	0.368	0.299	0.419	0.349	0.908	0.826			
TTECH-04	0.777	0.275	0.438	0.338	0.192	0.576	0.288	0.926	0.816			
TTECH-05	0.769	0.379	0.474	0.421	0.357	0.420	0.386	0.881	0.838			
TTECH-06	0.774	0.300	0.491	0.372	0.304	0.421	0.353	0.907	0.826			
TTECH-07	0.747	0.000	NaN	NaN	0.000	NaN	NaN	1.000	0.747			
TTECH-08	$0.747 \\ 0.666$	0.000	NaN 0.342	NaN 0.371	0.000	NaN NaN	NaN	$1.000 \\ 0.774$	$0.747 \\ 0.778$	0.855		
TTECH-09	$0.666 \\ 0.744$	$0.405 \\ 0.145$	0.342 0.475	$0.371 \\ 0.222$	0.000	NaN	NaN NaN	$0.774 \\ 0.954$	0.763	$\begin{vmatrix} 0.776 \\ 0.848 \end{vmatrix}$		
akbl-01	0.780	0.145	$0.475 \\ 0.512$	0.398	0.258	0.391	0.311	0.934 0.915	0.703			
ibrk-01	0.686	0.323 0.183	0.312 0.218	0.398	0.238 0.218	0.391 0.221	0.311 0.220	0.913 0.823	0.800	0.812		
ibrk-02	0.782	0.000	NaN	NaN	0.000	NaN	NaN	1.000	0.782	0.877		
RICT-01	0.782	0.000	NaN	NaN	0.000	0.000	NaN	0.999	0.782	0.877		
RICT-02	0.733	0.042	0.162	0.067	0.039	0.081	0.053	0.926	0.783			
RICT-03	0.568	0.516	0.102	0.354	0.417	0.176	0.248	0.593	0.852	0.699		
RICT-04	0.575	0.513	0.272	0.355	0.417	0.180	0.251	0.602	0.852	0.706		
RICT-05	0.781	0.000	NaN	NaN	0.000	0.000	NaN	0.999	0.781	0.877		
RICT-06	0.781	0.000	NaN	NaN	0.000	0.000	NaN	0.999	0.781	0.877		
RICT-07	0.808	0.295	0.630	0.402	0.194	0.579	0.291	0.962	0.827	0.890		
STARS-01	0.782	0.000	NaN	NaN	0.000	NaN	NaN	1.000	0.782	0.877		
STARS-02	0.748	0.003	0.008	0.004	0.000	NaN	NaN	0.957	0.785			
STARS-03	0.748	0.003	l	0.004		NaN	NaN	0.957	0.785			
STARS-04	0.748	0.003	0.008	0.004	0.000	NaN	NaN	0.957	0.785	0.862		
tmcit-01	0.735	0.428	0.371	0.397	0.194	0.373	0.256	0.846	0.826	0.836		
tmcit-02	0.737	0.451	0.373	0.409	0.215	0.405	0.281	0.842	0.831	0.837		
tmcit-03	0.739	0.441	0.377	0.406	0.165	0.384	0.231	0.852	0.827	0.839		
tmcit-04	0.743	0.476	0.392	0.430	0.169	0.377	0.233	0.850	0.832	0.841		
tmcit-05	0.737	0.480	0.382	0.426	0.179	0.372	0.242	0.840	0.832	0.836		
tmcit-06	0.741	0.418	0.374	0.395	0.168	0.390	0.234	0.858	0.825	0.841		
KSU-01	0.802	0.230	0.683	0.345	0.237	0.402	0.298	0.961	0.829			
KSU-02	0.799	0.201	0.724	0.314	0.254	0.370	0.301	0.961	0.829			
KSU-03	0.801	0.171	0.720	0.277	0.202	0.420	0.273	0.973	0.820	0.890		
KSU-04	0.799	0.153	0.732	0.253	0.214	0.404	0.280	0.973	0.820	0.890		
KSU-05	0.802	0.230	0.683	0.345	0.237	0.402	0.298	0.961	0.829	0.890		
KSU-06	0.799	0.201	0.724	0.314	0.254	0.370	0.301	0.961	0.829	0.890		
KSU-07	0.801	0.171	0.720	0.277	0.202	0.420	0.273	0.973	0.820	0.890		
KSU-08	0.799	0.153	0.732	0.253	0.214	0.404	0.280	0.973	0.820			
CUTKB-04	0.033			0.029	0.017	0.625	0.034	0.038	0.778			
LISLab-01	0.706	0.069	0.124	0.089	0.126	0.157	0.140	0.869	0.795	0.830		