MPII at the NTCIR-14 CENTRE Task Andrew Yates Max Planck Institute for Informatics

Motivation

Why did I participate?

- Reproducibility is important! Let's support it
- Didn't hurt that I had implementations available

We need incentives to reproduce & to make reproducible

Outline

- Other types of reproducibility
- Subtasks
 - **T1**
 - T2TREC
 - T2OPEN
- Conclusion

ACM Artifact Review and Badging (OSIRRC '19 version)

- Replicability (different team, same experimental setup): an independent group can obtain the same result using the author's own artifacts.
- Reproducibility (different team, different experimental setup): an independent group can obtain the same result using artifacts which they develop completely independently.

ACM Artifact Review and Badging (OSIRRC '19 version)

Replicability: different team, same experimental setup ... same result? Reproducibility: different team, different experimental setup ... same result?

- T1: replication of WWW-1 runs
- T2TREC: reproduction of TREC WT13 run on WWW-1
 Used new implementation (Anserini) by one of runs' authors.
 Making this replication? (but what about data change?)
- T2OPEN: open-ended reproduction

https://www.acm.org/publications/policies/artifact-review-badging

Outline

- Other types of reproducibility
- Subtasks
 - **T1**
 - T2TREC
 - T2OPEN
- Conclusion

SDM (A) > FDM (B)?

Obtained details from RMIT's overview paper:

- Indri, Krovetz stemming, keep stopwords
- Spam scores for filtering docs
- MRF params: field weights (title, body, inlink)
- RM3 params: FB docs, FB terms, orig query weight

Metrics

- Topicwise: do same topics perform similarly?
 RMSE & Pearson's r
- Overall: is the mean performance similar? Effect Ratio (ER)

Table 4. Effectiveness scores based on the WWW-1 qrels (n = 100 topics). *P*-values smaller than 5% are indicated in bold.

	Mean nDCG@10	Mean Q@10	Mean nERR@10
Original A: RMIT-E-NU-Own-1	0.6302	0.6548	0.7463
Original B: RMIT-E-NU-Own-3	0.5493	0.5657	0.6977
(Paired t -test p -value)	(9.057e-05)	(2.937e-05)	(0.0519)
(Glass's Δ)	(0.3358)	(0.3267)	(0.1823)
CENTRE-1-MPII-T1-A	0.5933	0.5996	0.7412
CENTRE-1-MPII-T1-B	0.5428	0.5568	0.6937
(Paired t -test p -value)	(4.352e-04)	(0.0128)	(0.0126)
(Glass's Δ)	(0.2017)	(0.1498)	(0.1687)

Table 5. T1 results for MPII based on the WWW-1 qrels. *P*-values smaller than 5% are indicated in bold.

	nDCG@10	Q@10	nERR@10
RMSE	0.2256	0.2431	0.2668
r (95%CI, p -value)	0.1469	0.1797	0.2603
	[-0.0510, 0.3337]	[-0.0174, 0.3633]	[0.0673, 0.4345]
	p = 0.1446	p = 0.0737	p = 0.0089
$\overline{\Delta M^C}$	0.0809	0.0891	0.0486
$\overline{\Delta' M^C}$	0.0506	0.0428	0.0475
$ER(\overline{\Delta' M^C}, \overline{\Delta M^C})$	0.6255	0.4800	0.9762

Table 5. T1 results for MPII based on the WWW-1 qrels. *P*-values smaller than 5% are indicated in bold.

	nDCG@10	Q@10	nERR@10
RMSE	0.2256	0.2431	0.2668
r (95%CI, p -value)	0.1469	0.1797	0.2603
	[-0.0510, 0.3337]	[-0.0174, 0.3633]	[0.0673, 0.4345]
	p = 0.1446	p = 0.0737	$\mathbf{p} = 0.0089$
$\overline{\Delta M^C}$	0.0809	0.0891	0.0486
$\overline{\Delta' M^C}$	0.0506	0.0428	0.0475
$ER(\overline{\varDelta' M^C},\overline{\varDelta M^C})$	0.6255	0.4800	0.9762

Figure taken from NTCIR-14 CENTRE overview paper.

Why were the topicwise results lower?

- Indri v5.12 (me) vs. v5.11 (RMIT)
- Scaling of unordered window size (fixed 8 vs. 4*n)
- Did not use inlinks field
 - *harvestlinks* ran for 1-2 weeks, then crashed (several times)
 - Possible it was a fault of network storage corpus was on

Is SDM (A) better than FDM (B) on CW12 B13 (C)?

→ Yes, assuming all parameters are fixed (!)
 What if spam filtering changes? Title field weight? ...

We now know I ran Indri (mostly) the way RMIT ran Indri. This doesn't say much about SDM vs. FDM!

	Where does "consideration of the	max planck institut informatik
Subtask T	<i>comprehensiveness of parameter tuning</i> " fit into the reproducibility classification?	
Is SDM (A) b		
→ Yes, assu	Annoying pessimist says: we're making things worse by reinforcing conclusions that may depend on original work's poor param choices	
What if s	depend en enginal mente peer param eneree	nt?
We now kno	Me: I'm not implying RMIT's tuning was wrong in any way (& don't think we're making situation worse). But how do we consider tuning?	n Indri.
This doesn't	say much about SDM vs. FDM!	1

ht? ...

n Indri.

- Is **A** better than **B** on a <u>different</u> collection **C**?
- Obtained details from UDel's overview paper
- Semantic expansion parameters (with F2-LOG)
- Weight given to expansion terms (β)

Known differences:

- Assumed Porter stemmer & Lucene tokenization
- Two commercial search engines (vs. 3 unnamed ones)
- CW12 B13 instead of full CW12
- TREC Web Track 2014 data to check correctness

Table 6. Effectiveness scores of the TREC Delaware runs (n = 50 topics) and those of the T2TREC runs from MPII based on the WWW-1 qrels (n = 100 topics). *P*-values smaller than 5% are indicated in bold.

	Mean nDCG@10	Mean Q@10	Mean nERR@10
UDInfolabWEB2	0.3477	0.2937	0.4634
UDInfolabWEB1	0.2514	0.2336	0.3097
(Paired t -test p -value)	(0.0023)	(0.0631)	(0.0012)
(Glass's Δ)	(0.3834)	(0.2197)	(0.5240)
CENTRE-1-MPII-T2TREC-A	0.5019	0.4595	0.6600
CENTRE-1-MPII-T2TREC-B	0.4271	0.3940	0.5525
(Paired t -test p -value)	(0.0045)	(0.0189)	(0.0021)
(Glass's Δ)	(0.2478)	(0.2074)	(0.3013)

Table 7. T2TREC results for MPII based on the WWW-1 qrels.

	nDCG@10	Q@10	nERR@10
$\overline{\Delta M^D}$	0.0963	0.0601	0.1536
$\overline{\Delta' M^C}$	0.0748	0.0655	0.1075
$ER(\overline{\Delta' M^C}, \overline{\Delta M^D})$	0.7767	1.0893	0.6997

- Is **A** better than **B** on a different collection **C**?
- → Yes, assuming parameter choices P are fixed

Better than replication situation: We observed A > B (given P) on two collections (but different P might still change this)

Subtask T2OPEN

- Is **A** better than **B** on a different collection **C**?
- Variants of DRMM neural model for both A and B
- DRMM's input is a histogram of (query, doc term) embedding similarities for each query term
- Taking log of histogram (A) was better across datasets, metrics, and TREC title vs. description queries

A Deep Relevance Matching Model for Ad-hoc Retrieval. Jiafeng Guo, Yixing Fan, Qingyao Ai, W. Bruce Croft. CIKM 2016.

Subtask T2OPEN

Is DRMM with LCH better on a different collection **C**?

- Implemented DRMM & checked against other code
- Trained on TREC WT2009-2013 & validated on WT14
- Tuned hyperparameters

A Deep Relevance Matching Model for Ad-hoc Retrieval. Jiafeng Guo, Yixing Fan, Qingyao Ai, W. Bruce Croft. CIKM 2016.

Subtask T2OPEN

Table 8. Effectiveness scores of the T2OPEN runs from MPII based on the WWW-1 qrels (n = 100 topics).

	Mean nDCG	Mean Q	Mean nERR
CENTRE-1-MPII-T20PEN-A	0.5279	0.5349	0.6587
CENTRE-1-MPII-T20PEN-B	0.5147	0.5198	0.6449
(Paired t -test p -value)	(0.4591)	(0.4678)	(0.6018)
(Glass's Δ)	(0.0515)	(0.0519)	(0.0472)

High p-value. Tuning differences? Dataset? Just a small effect?

Conclusion

- Successful overall reproductions for T1 and T2TREC
- Can reproducibility incentives be stronger?
- When we replicate, how best to deal with tuning? Ignore? Report grid search? Do we fix train/dev then?
- Faithfulness to original setup sometimes conflicts with using best parameters (given specific training/dev set)

Conclusion

- Successful overall reproductions for T1 and T2TREC
- Can reproducibility incentives be stronger?
- When we replicate, how best to deal with tuning? Ignore? Report grid search? Do we fix train/dev then?
- Faithfulness to original setup sometimes conflicts with using best parameters (given specific training/dev set)

Thanks!