### YJRS at the NTCIR-14 OpenLiveQ-2 Task Tomohiro Manabe Sumio Fujita Akiomi Nishida Yahoo Japan Corporation {tomanabe, sufujita, anishida}@yahoo-corp.jp

- OpenLiveQ is an information retrieval task for community QA sites.
- "The task is simply defined as follows: Given a query and a set of questions with answers, return a ranked list of questions."
- Data: 2,000 queries x 1,000 questions (with additional information, e.g., answers and snippets) and CTR as a relevance measure

## Our Approaches

We started with a linear combination of 77 basic features trained with the Coordinate Ascent (CA) method. This table summarizes our approaches.

# Evaluations

- In this task, all runs were evaluated online with the Pairwise Preference Multileaving (PPM) method.
- When a user submits a query, PPM mixes multiple rankings for the query into a list and show it to the user. Clicks on some questions indicate the user's preference in questions. The PPM gives credits to rankings which accord with the preference.
- The entire evaluation process spanned the first round (61 runs, 164k PVs) and the second round (30 runs, 149k PVs).

| Run IDs  | Ranking Model      | Training Method | Feature Set | Feature Count |
|----------|--------------------|-----------------|-------------|---------------|
| 91, 95   | Linear combination | CA              | Basic       | 77            |
| 92       |                    |                 | BM25F       | 80            |
| 93       |                    |                 | Translated  | 94            |
| 136      |                    |                 | All         | 97            |
| 100, 113 | Neural ranking     | ListNet         | Basic       | 77            |
| 144, 148 | Ensemble trees     | LightGBM        | Basic       | 77            |

#### Below is the system pipeline of our CA + All method.



#### CA + Basic Features [1] (IDs: 91, 95)

- Linear combination of 77 basic features
  - 4 fields x 17 textual features, e.g. TF, TFIDF, BM25, language models, …
  - 9 numeric features, e.g. answer count, view count, timestamp …

 Note: We list only our runs (with \*) and other team's best runs due to space limitation.

#### First Round of Multileaved Comparisons



- CA + BM25F (ID: 92), CA + Translated (ID: 93) > ListNet (IDs: 113, 100)
   > CA + Basic (IDs: 95, 91), LightGBM (IDs: 148, 144), CA + All (ID: 136)
- The performance of our linear combination runs were not stable.
  - Performance of our CA + Basic runs were quite different although they share the same feature set.
- Performance of our CA + All run was quite worse than ones of our CA + BM25F and our CA + Translated runs which use only subsets of features.
  Our LightGBM runs did not work. This may be because of small training data.

- Weights are optimized by CA.
- ID: 95 is just a retry (Note: CA is probabilistic).

#### CA + BM25F Features (ID: 92)

- The best performer in the previous round of the task [2]
- 77 basic features + 3 BM25F-like features
- Five-fold cross validation, nDCG@10 as the objective function

#### CA + Translated Features (ID: 93)

- Inspired by the other best performer in the previous round of the task [3]
- The vocabulary of queries must be more similar to questions than to answers.
- This method translates the best answer body texts into the "question language" with the GIZA++ toolkit and a public QA corpus.
- 77 basic features + 17 textual features of the translated field

#### CA + All Features (ID: 136)

• 77 basic features + 3 BM25F-like features + 17 translated features

#### **Second Round of Multileaved Comparisons**



- ListNet (IDs: 113, 100), CA + BM25F (ID: 92) > CA + translated (ID: 93)
   > CA + Basic (ID: 95)
- The ListNet runs occupied better positions than in the first round.
- The other tendencies were same as the ones in the first round.

### Conclusions

#### ListNet + Basic Features (IDs: 100, 113)

- 77 basic features
- 3-layer fully-connected feed-forward neural network with 200 hidden nodes
- Trained with ListNet [4]
- ID: 113 is with five-fold cross validation.

### LightGBM + Basic Features (IDs: 144, 148)

- 77 basic features
- Linear combination of 100 regression trees with 15 leaves each
- Trained with LightGBM [5]
- ID: 148 is roughly tuned.

- Among our runs, some combinations of a relatively simple learning-to-rank method and a reasonable feature set performed well.
- Namely, our ListNet (+ Basic) and CA + BM25F methods performed well
- Our linear combination runs resulted in unstable performance whereas ListNet runs, which used only basic features, were quite promising.

#### References

- [1] https://github.com/mpkato/openliveq/blob/master/README.md
- [2] Manabe et al. YJRS at the NTCIR-13 OpenLiveQ Task, NTCIR 2017.
- [3] Chen et al. Erler at the NTCIR-13 OpenLiveQ task, NTCIR 2017.
- [4] Cao *et al*. Learning to rank: from pairwise approach to listwise approach, ICML 2007.
- [5] https://github.com/microsoft/LightGBM

NTCIR-14, June 10-13, 2019, NII, Tokyo, Japan