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Training data Cosine similarity between sentence embedding (Word2vec) @ 0.306
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Evaluation on Formal Run

Our method Participants Assessment
* W/ sentence compression

» We applied sentence compression on the basis of simple rule

* W/0 sentence compression
w/0 sentence

Average of all the similarity measures
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OtherSysAve: the average scores of all the submitted runs of all participants
* Our methods outperformed OtherSysAve on all scores e Our method was effective
* F-measure of Rouge N4 of the method with sentence * The improvement of the sentence compression step

compression was the best score is important future work
* |t can generate summaries containing important phrases




