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Abstract. In this paper, we consider the Nugget Detection (ND) and Dialogue 

Quality (DQ) subtasks for Short Text Conversation 3 (STC-3) using deep 

learning method. The goal of NQ and DQ subtasks is to extend the one-round 

STC to multi-round conversation such as customer-helpdesk dialogues. The DQ 

subtask aims to judge the quality of the whole dialogue using three measures: 

Task Accomplishment (A-score), Dialogue Effectiveness (E-score) and 

Customer Satisfaction of the dialogue (S-score). The ND subtask, on the other 

hand, is to classify if an utterance in a dialogue contains a nugget, which is 

similar to dialogue act (DA) labeling problem. We applied a general model with 

utterance layer, context layer and memory layer to learn dialogue representation 

for both DQ and ND subtasks and use gating and attention mechanism at 

multiple layers including: utterance layer and context layer. The result shows 

that BERT produced a better utterance representation than multi-stack CNN for 

both DQ and ND subtasks and outperform the baseline models proposed by 

NTCIR on Ubuntu customer helpdesk dialogues corpus. 

Keywords:  Dialogue act, nugget detection, dialogue quality, short text 

conversation 
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1. Introduction 

Automatic question-answering and dialog systems are important applications in 

enterprise customer services. With such systems, customer service departments are 

able to save a plenty of time and human resources, and provide a 24-hour chatbot to 

answer customers’ questions. Short text conversation (STC) task is proposed for such 

goals in NTCIR-12. Various techniques from retrieval-based approaches to 

generation-based approaches have been studied in STC-1 & STC-2. However, 

evaluation of STC tasks relied greatly on human annotation. Thus, STC-3 in NTCIR-14 
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has initiated a new subtask called Nugget Detection (ND) and Dialogue Quality (DQ). 

The former aims to recognize the purpose or motivation (a total of 7 types) of each 

utterance in a dialogue, while the latter aims to evaluate the quality of a dialogue by 

three measures: Task Accomplishment (A-score), Dialogue Effectiveness (E-score) 

and Customer Satisfaction of the dialogue (S-score). 

ND can be considered as a kind of Dialog Act (DA) labeling problem. Most 

researches consider DA labeling problem as sequence labeling problem and use 

traditional machine learning methods [12,19,23]. Recently, many deep learning models 

[2,7,10,11,14,15] are proposed to tackle the problem. However, the golden answer of 

ND in STC-3 is the utterance’s nugget probability distribution instead of a certain 

nugget tag, thus the evaluation is based on JSD and RNSS scores which measure the 

probability distribution between outputs and golden answers as defined in [22].  

In this paper, we compared several DNN models based on a general model with 

utterance layer, contextual layer, memory layer and output layer. Since the DQ and ND 

subtasks use label probability distribution as training data, we apply softmax instead of 

CRF layer to predict label distribution. In this paper, we report the performance of not 

just the uploaded model during STC-3 but also the better model with pre-trained BERT 

word embedding. The former used multi-stack CNN with word2vec input for utterance 

representation, while the latter use pure BERT for utterance representation. Overall, in 

both DQ and ND subtasks, the new model results in the best performance than with 

NTCIR baseline models.  

2. Related Work 

Short text conversation (STC). Short text conversation (STC) task is proposed in 

NTCIR-12 as the first step toward natural language conversation for chatbots. For 

either retrieval-based (STC-1) or generation-based (STC-2) methods, the evaluation 

usually requires a lot of annotation efforts. Thus, automatic evaluation of dialog 

quality (DQ) and nugget detection (ND) is an important step to move from one-round 

conversation to multi-round conversation. The DQ subtask aims to analyze the quality 

of a given dialogue. The ND subtask is similar to dialogue act (DA) labeling problem, 

which could be solved using sequence labeling technique or classification problem. 

Previous researches on STC have investigated different techniques including: Hidden 

Markov Model [19], Naïve Bayes [12], Conditional Random Fields (CRF) [12,19,23], 

and deep learning methods [2,7,10,11,14,15]. Early deep learning models rely on CNN 

and BI-LSTM modules [11]. The CNN-based model outperforms the BILSTM-based 

model in both SWDA [8] and MRDA [18] datasets. Hierarchical CNN and BI-LSTM 

models are latter proposed to better represent sentences [2]. For example, [14] applied 

hierarchical CNN and hierarchical BI-LSTM for sentence and dialogue representation 

for DA labeling. More recently, CRF-based DNN model such as LSTM+CRF models 

are proposed in [7,15]. Furthermore, combining hierarchical BI-LSTM structure with 

CRF layer to represent utterance and dialogue is also studied in [10]. The major 

difference of the ND task to traditional DA labeling is the output: for each utterance, 
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the ground truth is not a single label but label distribution. Thus, the performance 

evaluation is based on JSD and RNSS [22]. 

Word Embedding. Word embedding is one of the most important techniques in 

natural language processing. The goal is to map the one-hot encoding of words to a 

lower dimensional space such that the vector of words represents their meanings and 

serves as an input to the neuron networks. There are several word embedding 

algorithms, including Word2Vec [15], GloVe, FastText, ELMo, OpenAI, BERT, etc. 

Word2Vec is an unsupervised learning algorithm, which trains the vector of words 

from given corpus by skip-gram and CBOW methods. The former predicts the word 

by its context and the latter predicts the context by a given word. BERT [5] is built on 

top of several clever ideas including semi-supervised sequence learning, multi-task 

training, bi-directional transformer [18], and masked language model. One can use 

pre-trained BERT for word representation or fine-tune on unlabeled data and train on 

labelled data for desired task. 

3. Dialogue Quality (DQ) Subtask 

The goal of DQ subtask is to evaluate the quality of a dialogue by three measures: 

Task Accomplishment (A-score), Dialogue Effectiveness (E-score) and Customer 

Satisfaction of the dialogue (S-score). We proposed two models for DQ subtask, the 

major difference of these two models is sentence representation, embedding layer and 

utterance layer, one is based on skip-gram with multi-stack CNN and the other is 

based on BERT structure. 

3.1. Memory enhanced multi-stack CNN with gating mechanism for DQ 

In this section, we followed the idea of hierarchical CNN in [14] to construct our model 

but use multi-stack CNN, we apply 2-stack CNN to utterance representation and 

1-stack CNN to context representation. There are 5 layers in our proposed model 

including input embedding layer, utterance layer, dialog context layer, memory layer 

and output layer (Fig 1). The goal of such hierarchical structure is to decode the input 

dialogue hierarchically from word, sentence to context, to capture the dependency of 

words and utterances. 
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Fig 1. Memory enhance hierarchical gated CNN (MeHGCNN) for DQ subtask 

Utterance Layer (UL). CNN with small size of filters is effective in learning sentence 

representation. We apply 2-stack CNN structure to learn the representation of an 

utterance. With multi-stack structure, long-range context information could be learned 

in a small size of filter. For example, filter with size 2 could only learn bi-gram context 

features. But 𝑛(𝑘 − 1) + 1 gram features could be learning by applying n-stack 

structure with the filter size k. 

Let 𝑢𝑖 denote the ith utterance of a dialogue. Each utterance 𝑋i contains n word 

tokens 𝑤(𝑖,1),𝑤(𝑖,2), … , 𝑤(𝑖,𝑛), where 𝑤(𝑖,𝑛) denotes the nth token in 𝑋𝑖: 

 

 𝑋i = [w(i,1),w(i,2), … , w(i,n)] (1) 

 

we added gating mechanism and attention mechanism for dialogue quality 

decision. Gating mechanism is widely used in recurrent neuron network such as LSTM 

and GRU to control the gates of memory states. The idea of gated CNN is to learn 

whether to keep or drop a feature generated by CNN. Gating mechanism is 

implemented by element-wise multiplication and sigmoid function [4] between the 

output of two convolution operations. Using gating mechanism in multi-stack CNN 

could generalize features more effectively. Multi-stack CNN with gating mechanism is 

computed as follows: 

 

  𝑢𝑙𝐴𝑖
𝑙 = 𝐶𝑜𝑛𝑣𝐴(𝑋𝑖

𝑙)  (2) 

  𝑢𝑙𝐵𝑖
𝑙 = 𝐶𝑜𝑛𝑣𝐵(𝑋𝑖

𝑙
i
)  (3) 

  𝑢𝑙𝐶𝑖
𝑙 = 𝑢𝑙𝐴𝑖

𝑙 ⊙ 𝜎(𝑢𝑙𝐵𝑖
𝑙) 𝑖𝑓 𝑙 ≤ 2 (4) 

  𝑋𝑖
𝑙←𝑙+1 = 𝑢𝑙𝐶𝑖

𝑙 𝑖𝑓 𝑙 > 2 (5) 

 

where 𝑋𝑖
𝑙 denotes the utterance vector from 𝑙𝑡ℎ layer and initializes  𝑙 = 1, 𝑋𝑖

𝑙 =

𝑋i. 𝑢𝑙𝐴𝑖
𝑙  denotes the features generated by convolution A, 𝑢𝑙𝐵𝑖

𝑙  denotes the gates for  

all features generated by 𝑢𝑙𝐴𝑖
𝑙 . 𝑢𝑙𝐶𝑖

𝑙  denotes the utterance representation after 

applying gating mechanism between 𝑢𝑙𝐴𝑖
𝑙  and 𝑢𝑙𝐵𝑖

𝑙  where ⊙ denotes element-wise 

multiplication and 𝜎 denotes sigmoid function. For 2-stack CNN, we execute equation 
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(2) to (5) for twice. The dimension of 𝑢𝑙𝐴𝑖
𝑙 , 𝑢𝑙𝐵𝑖

𝑙  and 𝑢𝑙𝐶𝑖
𝑙 are equivalent and depend 

on filter of convolution layer, which is [seqlen,512] for the 1st convolution layer output 

and [seqlen,1024] for the 2nd convolution layer output, where seqlen denotes the 

sequence length of an utterance. 

In convolution operation, CNN is often followed by max-pooling layer. In this 

paper, we only apply a max-pooling operation to the output of last convolution stack 

𝑢𝑙𝐶𝑖
𝑙  then add speaker and nugget information as additional features, which: 

 

 𝑢𝑙𝑖 = [𝑚𝑎𝑥𝑝𝑜𝑜𝑙(𝑢𝑙𝐶𝑖
𝑙), 𝑠𝑝𝑒𝑎𝑘𝑒𝑟𝑖 , 𝑛𝑢𝑔𝑔𝑒𝑡𝑖] (6) 

 

where 𝑢𝑙𝑖  denotes the output of utterance layer, 𝑠𝑝𝑒𝑎𝑘𝑒𝑟𝑖  and 𝑛𝑢𝑔𝑔𝑒𝑡𝑖 denote 

the speaker and nugget distribution of 𝑋𝑖  respectively. The dimension of 

𝑚𝑎𝑥𝑝𝑜𝑜𝑙(𝑢𝑙𝐶𝑖
𝑙)  is [1, 1024] and 𝑢𝑙𝑖  is [1, 1032] where |𝑠𝑝𝑒𝑎𝑘𝑒𝑟𝑖| = 1  and 

|𝑛𝑢𝑔𝑔𝑒𝑡𝑖| = 7. 

Context Layer (CL). Next, we learn the utterance vector with its adjacent utterance in 

context layer. Taking the utterance vector concatenated with its previous utterance and 

next utterance with dimension [1, 1032*3] as input. We then apply 1-stack CNN 

structure to capture the context information between these utterances. The output of 

context layer contains vectors of each utterance containing context information. 

Similar with the utterance layer, the operation of 1-stack CNN is computed as 

equation (2) to (5), the notation of context layer output is 𝒄𝒍𝒊 and without any 

additional features. 

Memory Layer (ML). Utterance layer and context layer well capture the context 

information between adjacent words and utterances but hard to get the long range 

context features. Therefore, memory network structure [21] is applied to our 

hierarchical models as Fig 2. Memory network structure is to capture context 

information by self-attention and feed-forward neuron networks and directly compute 

the similarity weight between any two utterances, which is able to better represent the 

context information than Bi-LSTM or multi-stack CNN. For memory layer, first we 

prepare Input Memory and Output Memory by BI-GRU from context layer 𝒄𝒍𝒊: 
 

 𝐼𝑖⃗⃗ = 𝐺𝑅𝑈⃗⃗⃗⃗⃗⃗ ⃗⃗  ⃗(𝑐𝑙𝑖 , ℎ𝑖−1) (7) 

 𝐼𝑖⃗⃗⃖ = 𝐺𝑅𝑈⃖⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ (𝑐𝑙𝑖 , ℎ𝑖+1) (8) 

 𝐼𝑖 = 𝑡𝑎𝑛ℎ(𝐼𝑖⃗⃗ + 𝐼𝑖⃗⃗⃖) (9) 

 𝑂𝑖
⃗⃗  ⃗ = 𝐺𝑅𝑈⃗⃗⃗⃗⃗⃗ ⃗⃗  ⃗(𝑐𝑙𝑖 , ℎ𝑖−1) (10) 

 𝑂𝑖
⃖⃗ ⃗⃗ = 𝐺𝑅𝑈⃖⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ (𝑐𝑙𝑖 , ℎ𝑖+1) (11) 

 𝑂𝑖 = 𝑡𝑎𝑛ℎ(𝑂𝑖
⃗⃗  ⃗ + 𝑂𝑖

⃖⃗ ⃗⃗ ) (12) 

 

where 𝐼𝑖⃗⃗ , 𝐼𝑖⃗⃗⃖ are encoded by BI-GRU to generate input memory 𝐼𝑖 , output memory 

𝑂𝑖  is the combination between 𝑂𝑖
⃗⃗  ⃗ and 𝑂𝑖

⃖⃗ ⃗⃗  which are also encoded by BI-GRU. The 
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hidden unit of the BI-GRU for input memory and output memory is 1024, which 

means the dimension of 𝐼𝑖 = 𝑂𝑖 = [1,1024]. 
Second, attention weight is calculated by inner product between current utterance 

𝑐𝑙𝑖  and input memory 𝐼𝑖 , followed by a softmax operation to get attention weight 𝑤𝑖  

as follows, where 𝑘 denotes number of utterances in a dialogue. 

 

 𝑤𝑖 =
𝑒𝑥𝑝(𝑐𝑙𝑖 ∙ 𝐼𝑖)

∑ 𝑒𝑥𝑝(𝑐𝑙𝑖′ ∙ 𝐼𝑖′)
𝑘
𝑖′=1

 (13) 

 

Third, weighted sum between attention and output memory is calculated. The 

memory layer output of ith utterance 𝑚𝑙𝑖 is the addition between the weighted sum 

of the output memory and the original utterance vector 𝑐𝑙𝑖 . The final output of 

memory layer 𝑚𝑙 is the concatenation of all k utterances as follows: 

 

 𝑚𝑙𝑖 = ∑ 𝑤𝑖′ ∙ 𝑂𝑖′

𝑘

𝑖′=1

+ 𝑐𝑙𝑖  (14) 

 𝑚𝑙 = [𝑚𝑙1, 𝑚𝑙2, … ,𝑚𝑙𝑘] (15) 

 

 
Fig 2. Overview of memory layer 

Output Layer. Finally, we apply a fully-connected layer with softmax function to 

calculate the score distribution for the given dialogue as: 

 

 𝑓𝑐 = 𝑚𝑙𝑊𝑓𝑐 + 𝑏𝑓𝑐 (16) 

 𝑃(𝑠𝑐𝑜𝑟𝑒|𝑑𝑖𝑎𝑙𝑜𝑔𝑢𝑒) =
𝑒𝑥𝑝(𝑓𝑐𝑖)

∑ 𝑒𝑥𝑝(𝑓𝑐𝑖′)
5
𝑖′=1

 (17) 

 

where 𝑊𝑓𝑐 is the transition matrix with dimension [|𝑚𝑙|, 5] where 5 is the numer of 

score distribution (-2,-1,0,1,2). 𝑃(𝑠𝑐𝑜𝑟𝑒|ui) denotes the output score distribution for 

utterance 𝑖 in a dialogue. 
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3.2. Experiments 

The STC-3 DQ and ND subtask use Ubuntu customer helpdesk dialogues as the 

corpus. The training data contains 1,672 dialogues with a total of 8,672 utterances, 

validation data are randomly selected from training data. Testing data contains 390 

dialogues with a total of 1,755 utterances. The label of both DQ and ND subtasks is 

annotated by 19 students from the department of Computer Science, Waseda 

University. 

For data preprocessing, we remove all full-shape characters and half-shape 

characters except (A-Za-z!"#$%&()*+,-./:;<=>?@[\]^_`{|}~ ') then apply NLTK tool 

[1] to convert utterances to sequence of words. For each sentence, we only reserve the 

first 150 words and drop the remaining words for all utterances. Word2vec [16] is used 

to train the word embedding model using STC-3 and wiki text8 corpus with word 

dimension sized 100, window size 5 by skip-gram model. 

Result of Dialogue Quality (DQ) Subtask. This section shows the performance of DQ 

subtask [22] in Normalized Match Distance (NMD) and Root Symmetric Normalized 

Order-Aware Divergence (RSNOD) as defined in [22]. For hyper-parameter tuning, 

batch size is 40 and epoch is 50 with early stopping 3. The number of filters for 2-stack 

CNN of utterance layer is 512 for the 1st stack and 1024 for the 2nd stack. The number of 

neuron for 1-stack CNN of context layer is 1024. Adam optimizer with 1e-5 learning 

rate is applied to optimize cross-entropy loss function. The performance of A-score, 

E-score and S-score are shown in Table 1. MeHGCNN is the model we proposed in 

section 3.1 and MeGCBERT is the model which replace the embedding layer and 

utterance layer with BERT. MeGCBERT outperforms MeHGCNN and all NTCIR 

baseline models. Furthermore, since BERT is a complex model with several 

bidirectional transformers, we doubt that simple BERT without any complex context 

and memory layer is able to perform well in DQ subtask. The result shows that even 

BERT performs well in utterance representation, the context layer and memory 

information is still necessary for DQ subtask. 

 

Table 1. Performance of DQ subtask 

Model 
(A-score) (E-score) (S-score) 

NMD RSNOD NMD RSNOD NMD RSNOD 

BL-uniform 0.1677 0.2478 0.1580 0.2162 0.1987 0.2681 

BL-popularity 0.1855 0.2532 0.1950 0.2774 0.1499 0.2326 

BL-lstm 0.0896 0.1320 0.0824 0.1220 0.0838 0.1310 

BL-BERT 0.0934 0.1379 0.0881 0.1344 0.0842 0.1337 

MeHGCNN 0.0862 0.1307 0.0814 0.1225 0.0787 0.1241 

MeGCBERT 0.0823 0.1255 0.0791 0.1202 0.0758 0.1245 

 

Table 2 shows the ablation of MeGCBERT model. Both gating mechanism and 

memory enhance well improve the performance in three types of score. The 

improvement of A-score and S-score is more significant than E-score. Adding nugget 
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feature also works well in A-Score and S-Score but only a little improvement in 

E-score. In summary, all the mechanisms we proposed improve A-score E-score and 

S-score. 

 

Table 2. Ablation of MeGCBERT 

Model 
(A-score) (E-score) (S-score) 

NMD RSNOD NMD RSNOD NMD RSNOD 

MeGCBERT 0.0823 0.1255 0.0791 0.1202 0.0758 0.1245 

W/o gating 

mechanism 
0.0885 0.1322 0.0813 0.1214 0.0815 0.1289 

W/o memory 

layer 
0.0913 0.1364 0.0808 0.1235 0.0799 0.1273 

W/o nugget 

features 
0.0963 0.1388 0.0802 0.1204 0.0774 0.1247 

3.3. Learning curve with different training data size for DQ 

In this section, we discuss the performance of validation data with MeGCBERT 

model trained by different size of training data. Fig 3, Fig 4 and Fig 5 show the 

learning curve of MeGCBERT for each score type. The horizontal axis denotes the 

proportion of training data we used to train the model and the vertical axis denotes the 

performance in validation data. The performance of NMD and RSNOD do not 

significantly improve when using 100% of training data comparing to only 80% 

training data, which means the number of training data might be enough in DQ 

subtask. On the other hand, adding more training data might not help in improving the 

performance in all A-score, E-score and S-score. 

 

 

Fig 3. Learning Curve of A-Score 
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Fig 4. Learning Curve of E-Score Fig 5. Learning Curve of S-Score 

4. Nugget Detection (ND) Subtask 

The goal of ND subtask is to classify the nugget type for all utterances in a given 

customer-service dialogue. There are seven types of nugget for each utterance as 

shown in Table 3. We proposed two hierarchical models for ND subtask, the major 

difference is sentence representation, one is based on skip-gram + multi-stack CNN 

and the other is based on BERT structure.  

 
Table 3. Seven types of nugget for ND subtask 

Nugget Description 

CNUG0 Customer trigger: Problem stated 

CNUG* Customer goal: Solution confirmed 

CNUG Customer regular: Utterances contain information to solution 

CNaN Customer Not-a-nugget: Utterances do not contain information to solution 

HNUG* Helpdesk goal: Solution stated 

HNUG Helpdesk regular: Utterances contain information to solution 

HNaN Helpdesk Not-a-nugget: Utterances do not contain information to solution 

 

4.1. Multi-stack CNN with LSTM for ND 

In this section, we followed the idea of hierarchical CNN in [14] to construct our model 

but use 3-stack CNN to represent an utterance. For context representation, we apply 

2-stack Bi-directional LSTM (Fig 6). There are 4 layers in our proposed model 

including input embedding layer, utterance layer, dialog context layer, and output layer. 
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Fig 6. Hierarchical CNN + BI-LSTM (HCNN-LSTM) for ND subtask 

Utterance Layer (UL). The multi-stack CNN structure of HCNN-LSTM utterance 

layer is similar with the one in MeHGCNN we proposed for DQ subtask. Instead, 

features are prepared by the concatenation between output of convolution A and 

convolution B. The kernel size of both convolution operations are 2 and 3 which could 

capture different size of n-gram features. That is, 

 

  𝑋i = [w(i,1),w(i,2), … , w(i,n)]  (18) 

  𝑢𝑙𝐴𝑖
𝑙 = 𝐶𝑜𝑛𝑣𝐴(𝑋𝑖

𝑙)  (19) 

  𝑢𝑙𝐵𝑖
𝑙 = 𝐶𝑜𝑛𝑣𝐵(𝑋𝑖

𝑙)  (20) 

  𝑢𝑙𝐶𝑖
𝑙 = [𝑢𝑙𝐴𝑖

𝑙 , 𝑢𝑙𝐵𝑖
𝑙]  (21) 

  𝑋𝑖
𝑙←𝑙+1 = 𝑢𝑙𝐶𝑖

𝑙 𝑖𝑓 𝑙 ≤ 3 (22) 

  𝑢𝑙𝑖 = [𝑚𝑎𝑥𝑝𝑜𝑜𝑙(𝑢𝑙𝐶𝑖), 𝑠𝑝𝑒𝑎𝑘𝑒𝑟𝑖] 𝑖𝑓 𝑙 > 3 (23) 

 

where the dimension of 𝑋i is [emb, seqlen], emb is the word embedding size, 

which is fix to 100, and seqlen denotes the number of words in a utterance, which is 

150. For 3-stack CNN, equation (19) to (22) is executed for 3 times. 

𝑠𝑝𝑒𝑎𝑘𝑒𝑟𝑖  denotes the speaker of 𝑋i with value 1 for customer and 0 for helpdesk. The 

dimension of 𝑢𝑙𝐶𝑖 is [seqlen, 1024] where 1024 is the number of filters of the 3rd 

convolution layer. Finally, after applying a max pooling operation and concatenating 

with speaker features, the dimension of utterance layer output 𝑢𝑙𝑖   become 

[1,1025]. 

Context Layer (CL). Context layer takes the output of utterance layer as input, we 

then apply 2-stack BI-LSTM structure to capture the context information of adjacent 

utterances in a same dialogue. With multi-stack BI-LSTM, context information could 

be learned from long-range utterances. The output of context layer is the utterance 

vector with context information. Formally, BI-LSTM is computed as follows. 
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  𝑐𝑙𝑖
𝑙⃗⃗ ⃗⃗  = 𝐿𝑆𝑇𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑢𝑙𝑖

𝑙 , ℎ𝑖−1)  (24) 

  𝑐𝑙𝑖
𝑙⃖⃗ ⃗⃗ ⃗ = 𝐿𝑆𝑇𝑀⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (𝑢𝑙𝑖

𝑙 , ℎ𝑖+1)  (25) 

  𝑐𝑙𝑖
𝑙←𝑙+1 = 𝑡𝑎𝑛ℎ (𝑐𝑙𝑖

𝑙⃗⃗ ⃗⃗  + 𝑐𝑙𝑖
𝑙⃖⃗ ⃗⃗ ⃗)   (26) 

  𝑢𝑙𝑖
𝑙 = 𝑐𝑙𝑖

𝑙  𝑖𝑓 𝑙 ≤ 2 (27) 

  𝑐𝑙𝑖 = 𝑐𝑙𝑖
𝑙 𝑖𝑓 𝑙 > 2 (28) 

 

For 2-stack BI-LSTM, the operations of equation (24) to (26) is executed for 2 

times. Let 𝑙  denotes the current stack which is initialized to 1. ℎ𝑖  denote the 

BI-LSTM hidden state for the 𝑖𝑡ℎ utterance. 𝑐𝑙𝑖⃗⃗ ⃗⃗  and 𝑐𝑙𝑖⃖⃗ ⃗⃗⃗ are the context vector for 

𝑢𝑙𝑖  decoded by forward and backward LSTM, respectively. Finally, 𝑐𝑙𝑖  is the 

combination of 𝑐𝑙𝑖⃗⃗ ⃗⃗  and 𝑐𝑙𝑖⃖⃗ ⃗⃗⃗. Since the number of BI-LSTM hidden units is 1024, the 

dimension of 𝑐𝑙𝑖  is [1,1024]. 

Output Layer. Finally, the model outputs nugget probability distribution for utterance 

𝒄𝒍𝒊 by a softmax function as follows:  

 

 𝑃(𝑛𝑢𝑔𝑔𝑒𝑡|ui) =
𝑒𝑥𝑝(𝑊𝑐𝑙𝑖)

∑ 𝑒𝑥𝑝(𝑐𝑙𝑖′)
𝑘
𝑖′=1

 (29) 

 

where k  denotes the number of utterances in a dialogue and 𝑃(𝑛𝑢𝑔𝑔𝑒𝑡|ui) 

denotes the probability distribution of nugget for 𝑋i. Dimension of the output is [1,7] 

since the number of nugget type is seven. 

4.2. Experiments 

Result of Nugget Detection (ND) Subtask. For hyper-parameters tuning of 

HCNN-LSTM, batch size is 30 and iterate 50 epochs for training process and set up 

early stropping to 3. We apply Adam optimizer with 1e-5 learning rate and the loss 

function is cross entropy. For HCNN-LSTM with skip-gram sentence representation, 

we apply 3-stack CNN in utterance layer with number of filters 256 for 1st stack, 512 

for 2nd stack and 1024 for 3rd stack. For context layer we apply 2-stack BI-LSTM and 

the number of hidden units are both 1024 for 1st and 2nd BI-LSTM stack.  

Two measures are used to evaluate ND tasks: Jensen-Shannon divergence (JSD) 

and Root Normalized Sum of Squared Errors (RNSS) as defined in [22]. As shown in 

Table 4, the inclusion of multi-stack CNN improves a little JSD with respect to 

baseline LSTM. However, RNSS is higher than BL-LSTM. For different sentence 

representation, BERT-LSTM outperform HCNN-LSTM. With the comparison 

between BERT-LSTM and BL-BERT, it shows that context layer is also important for 

ND subtask. Table 5 shows the ablation of BERT-LSTM for ND subtask. Multi-stack 

context layer well improves the performance since multi-stack structure can capture 

long-range context information, which is necessary for ND subtask. However, as 

Table 6, adding gating mechanism, or memory layer doesn’t help the model to 
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improve the performance. It might be result from the insufficient training data that 

cause overfitting in complex models. The analysis of performance between different 

training data size is further discussed in section 4.3. 

 

Table 4. Performance of ND subtask 

Model JSD RNSS 

BL-uniform 0.2304 0.3708 

BL-popularity 0.1665 0.2653 

BL-lstm 0.0248 0.0952 

BL-BERT 0.0341 0.1171 

HCNN-LSTM 0.0246 0.0962 

BERT-LSTM 0.0228 0.0933 

 

Table 5. Ablation of BERT-LSTM 

Model JSD RNSS 

BERT-LSTM 0.0228 0.0933 

W/o CL multi-stack 0.0246 0.0951 

 

Table 6. Experiments of gating and memory enhance 

Model JSD RNSS 

BERT-LSTM 0.0228 0.0933 

W/ gating mechanism 0.0244 0.0960 

W/ memory layer 0.0234 0.0941 

4.3. Learning curve of different data size for ND subtask 

Fig 7 shows the learning curve of BERT-LSTM model. Both JSD and RNSS reduce 

when adding number of training data until 100% training data are used. This tendency 

shows our model could perform better if there is more training data for ND subtask. 

On the other hand, we cannot expect a complex model to perform well without 

sufficient training data, this is the major reason that we do not apply gating 

mechanism and memory layer in HCNN-LSTM models for ND subtask. 

 

 

Fig 7. Learning Curve of ND 
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5. Conclusion 

In this paper, we propose two hierarchical multi-stack models for both DQ and ND 

subtasks. The experiments show that multi-stack mechanism is effective in capturing 

long-range context information between words and utterances and improve the 

performance. In addition, gating mechanism and memory enhance structure is applied 

to MeHGCNN for DQ subtask, which improves the performance of all three types of 

score. Due to the insufficient training data of ND subtask, adding complex structure 

such as gating mechanism and memory enhance structure might cause overfitting and 

drop the performance. Moreover, besides word2vec algorithm with multi-stack CNN, 

we also try BERT as sentence representation which well improves the performance of 

all measures in both DQ and ND subtasks. Finally, our models outperform comparing 

with other baselines proposed by NTCIR. 
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