TMUDS at the NTCIR-15 DialEval-1 Task

Yen-Chun Huang, Yi-Hsuan Huang, Yu-Ya Cheng, Jung-Yi Liao, Yung-Chun Chang

Author

Yen-Chun Huang Graduate Institute of Data Science, Taipei Medical University, Taiwan

Yi-Hsuan Huang Graduate Institute of Data Science, Taipei Medical University, Taiwan

Jung-Yi Liao Professional Master Program in Data Science, Taipei Medical University, Taiwan

Yung-Chun Chang Graduate Institute of Data Science, Taipei Medical University, Taiwan

Yu-Ya Cheng Professional Master Program in Data Science, Taipei Medical University, Taiwan

Outline

- 1. Introduction
- 2. Dataset
- 3. Preprocessing and Feature Extraction
- 4. Method architecture
- 5. Experiment and result
- 6. Experiment and discussion
- 7. Conclusion and feature works

Introduction

DialEval-1

 It's a task that aim to automatically evaluate the quality of the dialogue and which dialogue turns are helpful without a human annotator.

Nugget Detection

 Given a customerhelpdesk dialogue, return an estimated distribution of labels over nugget types (similar to dialogue acts) for each turn.

Dialogue Quality

 Given a customerhelpdesk dialogue, return an estimated distribution of dialogue quality ratings for the entire dialogue.

Preprocessing and Feature Extraction

- 1. Word segment
- 2. Round features extraction :

Method architecture

Experiment and discussion 1

Hyper-parameter	Value
Embedding	Word2Vec (300) Bert (100,768)
Learning rate	1e-3
Drop out	0.35
Epoch	50
Batch size	128

Run	main structure	
run-0	Bert emb	2 BilSTM
run-1		2 BiLSTM + Att
run-2		1 BiLSTM + Att

Experiment and discussion 2

Method	Local JSD	Local RNSS
TextCNN	0.048	0.141
LSTM	0.043	0.130
BiLSTM	0.040	0.129
2 BILSTM	0.036	0.122
2 BilSTM (*)	0.036	0.120
2 BiLSTM (*/ **)	0.037	0.121
2 BiLSTM (*/ **) + Att	0.035	0.120

- Compared with other basic models, the ability of bidirectional LSTM to process short texts can capture contextual meaning better.
- Based on the statistical results of the training set and the validation set, the nugget label in each round of the dialogue are not uniformly distributed, which has a specific tendency. We separate the first round of dialogue independently from the prediction model.
- We also regard the vector of the previous round as the current training feature and add it to the training.

Conclusion and feature works

Extract more features such as dependency and key-word to enhance the effectiveness.

Adjust the method of position weight from the former utterance.

Re-modify the model with Transformer BERT.

2

3

Thanks for listening !!