Our team uses both machine learning methods and rule-based methods.

Our approach is a two-step process:
1. Extract the party's statements (rule-based + machine learning)
2. Categorize the party's stance (machine learning)

Our approach is a two-step process:
1. Extract the party's statements (rule-based + machine learning)
2. Categorize the party's stance (machine learning)

Our approach is a two-step process:
1. Extract the party's statements (rule-based + machine learning)
2. Categorize the party's stance (machine learning)

We proposed a machine learning based method using LightGBM. We designed our features includes linguistic information, and a polarity score. The experimental result showed our machine learning method and our features were effective.

Approach

Our team uses both machine learning methods and rule-based methods.

Our approach is a two-step process

1. Extract the party's statements (rule-based + machine learning)
2. Categorize the party's stance (machine learning)

Pipeline

STEP 1

- Feature 1
 - If a bill number is included in a given sentence, return true.
 - If one or more patterns of "all (全て)" or "agree (賛成)" is included, and if one or more patterns of "disagree (反対)" is included, return true.

STEP 2

- Feature 1
 - Its value is "1" when there is a "agree (賛成)" immediately after the bill number, "2" when there is a "disagree (反対)" and "0" when there is no such string occurs.
- Feature 2
 - Final layer of BERT output, dimensionally compressed by PCA
- Feature 3
 - Polarity scores using a Japanese Sentiment Polarity Dictionary

\[
\text{Polarity score} = \frac{\text{sum of the polarity values}}{\text{number of words}}
\]

Experiment

Training Strategy

- Model: LightGBM
- Features: Party, BillClass, Proponent, Feature 1~3
- Cross-validation: Stratified 5-fold

<table>
<thead>
<tr>
<th>Feature</th>
<th>Cross Validation</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without Feature 1</td>
<td>0.892</td>
<td>0.942</td>
</tr>
<tr>
<td>Without Feature 2</td>
<td>0.901</td>
<td>0.947</td>
</tr>
<tr>
<td>Without Feature 3</td>
<td>0.911</td>
<td>0.952</td>
</tr>
<tr>
<td>All Features</td>
<td>0.906</td>
<td>0.951</td>
</tr>
</tbody>
</table>

Each feature contributed to the performance.

Conclusion

We proposed a machine learning based method using LightGBM. We designed our features includes linguistic information, and a polarity score. The experimental result showed our machine learning method and our features were effective.