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ABSTRACT
The growing attention to lifelogging research has led to the cre-
ation of many retrieval systems, most of which employed event
segmentation as a core functionality. While previous literature fo-
cused on splitting lifelog data into broad segments of daily living
activities, less attention was paid to micro-activities which last for
short periods of time, yet carry valuable information for building a
high-precision retrieval engine. In this paper, we present our efforts
in addressing the NTCIR-15 MART challenge, in which the partici-
pants were asked to retrieve micro-activities from a multi-modal
dataset. We proposed five models which investigate imagery and
sensory data, both jointly and separately using various Deep Learn-
ing and Machine Learning techniques, and achieved a maximum
mAP score of 0.901 using an Image Tabular Pair-wise Similarity
model, and overall ranked second in the competition. Our model
not only captures the information coming from the temporal visual
data combined with sensor signal, but also works as a Siamese
network to discriminate micro-activities.
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1 INTRODUCTION
The continuous development of technology has led to an increase
in the availability of many low-cost personal devices, which aid
people in digitalising their life, either actively or passively. One can
now effortlessly construct detailed digital records by aggregating
data sources from various wearable devices, where such a person
is known as a lifelogger [14]. Lifelog data is a type of multi-modal
big data that consists of spatio-temporal information (e.g. timezone,
geographic location), visual information (e.g. images, videos) and
bio-metric states of the body (e.g. heart-rate, calorie intake, steps).
Owing to the huge volume of data generated, there has been an
increasing need for efficient data management and effective re-
trieval systems. Consequently, many challenges were held to tackle
this problem, namely ImageCLEFlifelog [3–5, 28], NTCIR Lifelog
Task [8–10] and Lifelog Search Challenge (LSC) [11, 12], each of
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which attracted many researchers to develop search engines, and
to evaluate these retrieval systems based on various metrics of
performance.

The recognition of daily human activities plays an important role
in many lifelog retrieval systems [14]. Such activities are employed
to segment data, but only into large chunks such as working, driv-
ing, or eating. In fact, each chunk actually comprises many smaller
activities which carry more detail about the lifeloggers’ activities,
and this contributes directly to the accuracy of the retrieval sys-
tems. For example, one might be replying to emails, organizing
documents or answering a phone within an activity segment la-
belled as "working". With the availability of lifelog data in the past
work, a retrieval system would not indicate precisely which period
of the activity corresponds to "replying email" activity. Therefore,
there is a need for an efficient multi-modal source of lifelog data
which can capture and distinguish the totality of human activities
that can occur in daily life.

The NTCIR Micro-Activity Retrieval Task (MART) [17] focused
on the identification of micro activities, which only happen within
a short time period are not typically identified using conventional
wearable devices. The task organisers have introduced the first
generation of a new micro-activities in daily living dataset which
incorporates various data sources: images from lifelogging cam-
era, electrooculogram (EOG) signals from eye movements, heart
rate, accelerometer readings of two hands and head movements,
and computer interaction data from Loggerman software 1. The
combination of these sources provided rich insight into the action
being performed by the lifelogger. For instance, the hands’ move-
ment (accelerometers) can differentiate the activity of typing on
a keyboard and answering a phone call, or the movement of eyes
(EOG) can reveal signatures related to different types of activities
(e.g. reading).

In the MART retrieval task, participants were asked to predict 20
classes of micro-activity performed by 7 different subjects, either
automatically or interactively. As there are 140 items to be predicted
in the test set, the task participants needed to submit 20 ranked lists
for each submission, each of which contained 140 ids in the order
of relevance, making a total of 2,800 rows in the submission file.
In this paper, we present five approaches to addressing the MART
retrieval challenge. Two of our approaches, BI (Baseline Image)
model and BT (Baseline Tabular) model exploit image and tabular

1http://loggerman.org/
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Figure 1: Overview of five proposed models in a complete pipeline

data separately, the other three approaches examine different ways
of combining these two approaches to predict the corresponding
micro-activity. A post-processing procedure was applied for all
proposed models to obtain an optimised ranked list for submission.

2 RELATED RESEARCH
With the development of a wide range of sensors for human activity,
much research has been conducted to recognise basic human activi-
ties using these; for example using accelerometers, gyroscopes and
magnetometers [38]. With the popularity of smartphones, many
other diverse data sources can be captured using sensors like prox-
imity sensors, ambient light sensors, thermometer and barome-
ter sensors. All of these sensors can be employed to build sensor
fusion-based human activity recognition models with higher accu-
racy [31] and more energy-efficient [32] than using only one single
data source such as from an accelerometer [22, 24, 26, 33]. Much
research has also been done to show that Machine Learning models
work effectively on these problems [1, 21, 35], however, Hassan
et al. suggest that Deep Learning can be more robust that tradi-
tional typical approaches such as Support Vector Machine (SVM)
and Artificial Neural Network (ANN) [15]. The same work which
utilises Convolutional Neural Network (CNN) proposed by Igna-
tov on two commonly used WISDM and UCI datasets also achieve
state-of-the-art performance while requiring low computational
cost and no manual feature engineering [19]. Furthermore, Wang
et al. suggest that hybrid Deep Learning models, which combine
CNN and Recurrent Neural Networks (RNN) [29, 34, 39], have the
tendency to perform better than single Deep Learning models [38].

Besides the use of sensors data for activity recognition, elec-
trooculography (EOG) is also considered to be a potential sensor
source from which to identify which actions are being performed
by human when eye movement behaviour contains discriminative
information. Andreas Bulling et al. [2] was one of the pioneers
in exploiting eye movement for activity recognition. The authors

succeeded to classify 5 types of activity (copying text, reading paper,
taking handwritten notes, watching a video, browsing the web) by
examining different eye movement features extracted from EOG
data (such as blinks, saccades, fixations). Shoya Ishimaru et al. [20]
also achieved compelling results by using portable commercial
EOG glasses to classify 4 activities (eating, talking, typing, reading).
These prior works demonstrate that the eye movement patterns
can reveal important properties and behaviours of certain actions,
which can lead to an accurate prediction of human activities by
combining them with other sensors’ measurements.

Similar with MART, the LSC (Lifelog Search Challenge) is also
a retrieval benchmarking activity for multi-modal lifelog data but
mostly relies on visual, geospatial and biometric data [13]. Unlike
MART, participants in LSC, however, need to build interactive sys-
tems to assist a user to find a specific activity matching a given
textual description. Many such interactive systems have the option
for users to query by sketching an overview of an activity [18] while
virtual environment also showed its own advantages [7]. Ranking
algorithms for documents retrieval can also be applied [37]. Con-
verting the query and visual data into the same space to be able to
make the comparison is also another point of view [25]. Besides,
the system of Mejzlík et al. [27] supports the option for retrieving
based on user’s relevance feedback. Many of above systems are
based on the indexing of visual concepts detected from image data
with other sources of evidence used as filters, and serve as inter-
active interrogation tools for individuals to use. Our approach, in
contrast, is entirely automatic and also employs additional sensor
signal information. Moreover, we do not utilise the object detection
information in the MART metadata but use entire images as one of
our input features.

Our main contributions in this paper are threefold. Firstly, we
introduce two simple approaches, which are considered baseline ap-
proaches, which utilise only either visual or sensory data. Secondly,
we integrate both of these types of data to create three improved
models that use both deep neural networks and a traditional tree
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Figure 2: Image Tabular Pair-wise Similarity Model Architecture

classifier with a feature selection process. Thirdly, our submission
runs shed light on the suggestion that including non-visual sensory
data alongside visual data, is advantageous for MART in which our
best submission run’s model achieved second place with the score
of 0.901.

3 METHOD
3.1 Overview
The provided MART dataset consists of four main parts which
are: images from an Autographer (lifelog camera), tabular data of
pre-computed features, screenshots and raw data (time-series data
from recording devices for who do not wish to use pre-computed
features). Among these, we have a particular interest in the images
from the Autographer and the tabular data of sensor reading fea-
tures. Images are visually rich as they contain valuable information
such as objects appearing therein and scene changes, which might
offer clues about the activity’s type. Tabular data, on the other hand,
reflects the internal properties of each activity through the interac-
tion between the subjects and the environments such as how they
moved their hands or where they looked at. In contrast, we do not
consider screenshots to be of benefit to the retrieval task as they are
likely to yield biases and noises in the training process. This is be-
cause screenshots in the dataset were being captured continuously
even when the subjects don’t interact with the computer.

We aimed at developing simple classification models for image
and tabular data to demonstrate the possibility of utilising these fea-
tures to infer human activities. Upon this, we further investigated
more advanced methods which aggregate image and tabular fea-
tures in several ways in order to optimise the classification results.
Figure 1 provides an overview of the structure of our proposed
models.

3.2 Baseline Image Model (BI)
In this model, we proposed a simple Image classification model
using only the data from the Autographer as input. Since an event is
depicted by a sequence of images in chronological order, we decided
to consider the images independently to perform the classification
and average the score across all images to obtain the prediction
afterwards.

Regarding the size of the input, which is relatively small (2,752
images), it is advantageous to apply a small-scale network in order

to facilitate a fast training, small memory, yet good performance
model. Resnet-34 [16] is on top of our consideration as deeper mod-
els tend to be overfitting easily given the small data size. Moreover,
we also compare Resnet-34 with EfficientNet-B4 [36] model which
has slightly less parameters (around 19 millions) but was reported
to achieve higher classification result. The BI model was created
by using those models as a backbone and adding a hidden fully
connected layer after the global pooling layer of them. The output
of this hidden layer would work as a features for later advanced
methods.

3.3 Baseline Tabular Model (BT)
Similarly, we developed a Tabular model in which sensors and
computer interaction data utilised as input. The task organiser has
provided a CSV file containing some basic statistics (min, max, me-
dian, average, standard deviation) extracted from raw signal data,
which are handy and easy to use features for micro-activity predic-
tion. Since we only interest in data from sensors and Loggerman
(computer interaction tracker), the majority part of the CSV file
regarding the Resnet-101 features was eliminated.

We pre-processed the given data by filling the missing records
by the median value and creating a corresponding columns with
True/False value to keep track of the filled positions. The data was
then normalised before feeding to the Tabular model. The model
is a simple neural network with the use of three hidden layers in
which the output of the last layer would be a tabular features for
our advanced architectures.

3.4 End-to-end Image Tabular Model (IT)
Upon two proposed baseline approaches, we developed a hypothesis
that the combination of both features (images and sensors) would
yield a better result. To verify our assumption, we advanced the
model by concatenating the Images features and Tabular features
produced by BI and BTmodel. They were followed by a hidden layer
and performed end-to-end training to predict the micro-activities.
The detailed architecture of this model is illustrated in Figure 1.
It was noted that the IT model included both BI and BT baseline,
hence the weights of this model were initialised from two previous
trained models and all would be updated in the training stage.
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Table 1: Micro-Activity Retrieval Results

Model Input Structure mAP
BT Tabular data MLP 0.69817

BI Image data Resnet-34 0.70279
EfficientNet-B4 0.73694

IT Tabular and Image data MLP + Resnet-34 0.81527
MLP + EfficientNet-B4 0.88498

IT-ETC Selected Tabular attributes Extra Trees Classifier 0.86090
Selected Tabular attributes and EfficientNet-B4 features 0.88637

IT-PS Tabular features and EfficientNet-B4 features MLP + GRU 0.90124

3.5 Image Tabular Extra Tree Classifier Model
(IT-ETC)

According to the results from previous related works [1, 21, 30, 35,
40], machine learning models are efficient at most classification
problems that use statistical signal-based features as input, espe-
cially in human activity classification problems [1, 21, 35]. Based on
these works, we deployed different machine learning models such
as logistic regression multi-class classifier, random forests, decision
tree and extra trees classifier (ETC) from the scikit-learn library 2,
with related feature selection techniques to fine-tune each model.
Eachmodel was trained with a balanced number of samples for each
class in both training and validation sets. Due to the small-scaled
dataset, K-Fold cross-validation training (𝑘 = 7) was applied.

Using the tabular data from CSV file, excluding attributes in-
dicating Resnet-101 features with mouse-logging missing values
imputed to −1 and corresponding indicators, the ETC model, which
contained 250 randomized decision trees, outperformed other mod-
els after feature selection process. Since the ETC was overfitted
using raw deep image features in section 3.2, the same feature selec-
tion process was applied to choose discriminative components in
these features before it was concatenated to corresponding selected
tabular features for training.

The feature selection step used in our method is an iterative
process which computes impurity-based feature importance for
each component in the input vector feature, then choosing the
cut-off threshold which was set to 0.001 after empirical trial results.
This process was repeated until the model stopped overfitting. The
overview pipeline of the IT-ETC approach is illustrated in Figure 1.

3.6 Image Tabular Pair-wise Similarity Model
(IT-PS)

The model was designed to cope with the scarcity of available
labelled data by following a Siamese structure. The model would
take the data from two activities as an input and predict if they come
from the same activities or not. By doing this pair-wise approach,
we managed to create an enormous number of activity pairs from
the small data set. The framework of IT-PS was shown in Figure 2.

We designed an Embedder module to learn the mapping of both
image and sensory features into one space. A Discriminator was
trained to distinguish two different instances of activities based on

2https://scikit-learn.org

their respective embedding vectors. For our particular experiment,
let𝑎 = (𝑎1, ..., 𝑎𝑁 ) and𝑏 represented the image and sensory features
respectively of an activity instance x. These features were given by
the BI and BT model as the fixed input for IT-PS model meaning
that this advanced method did not include the layers from these
2 baseline models. We designed the IT-PS model in the following
way:

Embedder

𝑖𝑡 = 𝑀𝐿𝑃 ( [𝑎𝑡 , 𝑏])
𝑜1, ..., 𝑜𝑁 = 𝑅𝑁𝑁 (𝑖1, ..., 𝑖𝑁 )

z = 𝑀𝐿𝑃 (𝑜𝑁 )
(1)

where [·, ·] represented the concatenation of input vectors, 𝑀𝐿𝑃

and 𝑔 were nonlinear, multi-layered functions, RNNwas a recurrent
neural network and z was the final embedded vector.

Discriminator

𝑐 (x1, x2) = 𝑀𝐿𝑃 (z(x1), z(x2))
𝑷 (𝑙𝑥1 = 𝑙𝑥2 ) = 𝜎 (𝑐 (x1, x2))

(2)

where 𝜎 was the sigmoid function, 𝑙𝑥1 and 𝑙𝑥2 were the predicted
activities of x1 and x2 accordingly.

Inference To classify an instance of activity, we ran the trained
IT-PS model to compare the instance to each sample of the train
dataset and calculate the average score of each class. The scores
were then ranked and the highest-scoring class would be taken as
the final classification.

3.7 Post-processing
As outlined in the task description, the participating teams were
required to submit a ranked list of 140 ids (7 subjects x 20 activities)
for each activity (20 in total). This list was evaluated by using the
mean Average Precision (mAP) score, a measure which increases
when the correct predictions have a high ranking. Considering a
specific activity, the most intuitive way to work around this was to
sort 140 ids in the descending order. However, since each activity
was performed once by each subject (in the test set), this meant
that a correctly ranked list should contain 7 activities of 7 distinct
subjects at the top. Hence, for each activity, we divided 140 ids into
7 blocks, each of which corresponds to one subject. The id with
highest prediction score of each block was then put in the top 7,
while the rest is presented in the descending order of prediction
score. In effect, this procedure leveraged prior knowledge about
the test set collection.
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4 EXPERIMENTS AND DISCUSSION
4.1 Implementation Details
We configured the BI model by adding a fully connected layer with
512 units after the global pooling layer of the backbone (Resnet-34
or EfficientNet-B4). In the BT model, the size of three hidden layers
were 1000, 500 and 128 accordingly. Similarly, the number of nodes
of that in IT model was chosen to be 128 also. In the IT-PS model,
the MLP structure in the Embedder module was a simple single
neural network while that in the Discriminator component was
a network with three layers. It is worth pointing out that batch
normalisation and drop-out regularisation techniques were utilized
after each of the fully connected layers with a drop-out rate of
0.5. We decided to use the GRU module with an embedding size
of 512 in the RNN part of the Embedder block due to its compact
capacity. We chose Adam [23] to be the optimizer for the BI, IT,
IT-PS and BT models. The learning rate was set at 0.001 for the first
three approaches while that of the latter was 0.005 (respectively).
The value of this hyper-parameter in the BT model was higher
since it was trained from scratch. This was different with other
designs in which the BI model was already trained from ImageNet
dataset [6] while the IT and IT-PS models were initialized from the
BI model. We also split the labeled data into training and validate
proportionally with the ground truth activities.

Figure 3: The example of 2 visually similar activities, ex-
tracted from subject id 1004. Images highlighted in red were
from act02 which is reading text on screen while the ones in
green were from act04 which is staring a point

4.2 Results and Discussion
Table 1 provides insight into the mAP results of our submission
under different settings. As can be seen from the table, the BTmodel
had the lowest mAP score of 0.698 while IT-PS model performed
best with the score more than 0.901. It was not surprising that
the baseline structure achieved a lower score than the advanced
ones with a difference of at least 0.078 in mAP. In the baseline
models, the performance when using images was better than when
using non-visual sensor and computer interaction signals. Although
containing less number of training parameters, BI model with the
backbone of EfficientNet-B4 obtained higher mAP than Resnet-34
which were 0.737 and 0.703 respectively. The difference between the
two models became significantly clearer when the score of the IT
model using the former backbone was 0.885 while that of the latter
was 0.815. This also meant that combining both visual and signal
features could boost the performance by up to 0.148 compared to
using a single data type (visual vs non-visual). This was anticipated

as there were some samples which were impossible to have the
correct prediction if only using visual data. For instances, Figure 3
depicted two activities which one would be unable to distinguish
by using autographer data alone. The upper row marked with red
color illustrates images of the "Reading text on screen" activity and
the bottom green-noted row illustrates "Staring" activity.

The IT-ETC approach employs an ensemble machine learning
model that managed to achieve the mAP of 0.861 by using only tab-
ular features processed through a feature selection step. In addition,
the approach of concatenating selected EfficientNet-B4 features
extracted from autographer increased the mAP slightly to 0.886. In
addition, this model attained a higher mAP than IT model on the
test set since the low amount of samples in the training dataset is
not suitable for a deep learning technique. On the other hand, the
IT-PS was the best approach in all runs because of its two main
properties. The first was its ability to capture the sequence infor-
mation between Autographer images within an activity by using
a GRU module. The second explanation for its high performance
is based on its input format. The IT-PS model received a pair of
activity features samples to make the prediction of a probability if
they were come from the same activity or not. This meant that by
creating pairs of samples it could produce a large number of traiing
samples from the training data, hence mitigating issues related to
the small training set provided in MART.

However, issues relating to overfitting still remain in our models.
Although we split the labeled data into training and validating
subsets, the score in the test set is much lower than the mAP in our
subset which was almost 1 for the IT model. This matter appears
in our baseline BI and BT models, hence also affects the advanced
methods which were built on top of two baseline structures. The
reason may be the way we created the subset where we randomly
selected on entire data. This led to a phenomenon that our training
subset included the information of all 7 subjects making it lose some
properties of generalisation. One future solution is that we could
split the data based on subject-level, for instance, the information
of 5 subjects will be used for training and the 2 remaining for
validating.

5 CONCLUSION
In this paper, we have presented our team’s effort in predicting
the micro-activities on the first generation of the MART dataset
using both Machine Learning and Deep Learning approaches. A
total of five models were proposed to exploit the visual information
from the Autographer, signal readings and computer interaction
logs to perform the MART retrieval task. The results of two models
BI and BT served as baselines for other participating researchers
to compare with, while the rest is meant for competitive bench-
marking. Among the five models which were used to generate
submission runs, we achieved the highest mAP (of 0.90) using our
IT-PS model, and overall came second in the MART challenge using
this.

For the future work, we aimed to tackle the overfitting issues
identified in subsection 4.2 by conducting the user-independent
experiments on the proposed models. Additionally, we also plan
to engineer more advanced features in future work from the raw
data, especially eye movements (i.e. blink rate, fixations, saccades)
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and integrate these in our models. Finally, we seek to develop
an interactive retrieval system to meaningfully visualise complex
multi-modal micro-activity data, that will serve as a search engine
as the MART dataset becomes bigger in the future.
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