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ABSTRACT 
The paper describes our submissions to the NTCIR-15-FinNum-2 
shared task in financial tweets analysis. We submitted two runs in 
the final test. The first run is our baseline system, which is based 
on the BERT model with our preprocessing strategy. The second 
run is our fine-tuned system based on the XLM-RoBERTa 
pretraining model with more tokenization and fine-tuning 
techniques. The macro-F1 of run 2 is 95.99% on development set, 
and 71.90% on formal test which ranked second best. 

CCS CONCEPTS 
• Information systems→Information extraction. 
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1 Introduction 
FinNum-2 is a shared task to analyze financial tweets, these tweets 
are discussing stock prices and the companies [5]. There are many 
stock names and many numbers in these tweets. The goal of the 
shared task is to uncover whether names and numbers in a tweet 
associates or not. In the training data, we can see that there is at 
least one pair of target numeral and cashtag in a tweet, therefore the 
problem definition can be a binary classification to tell if the target 
numeral is relevant to the given cashtag. 

Most submissions of NTCIR-14 FinNum-1 [3,4] use 
word/character embeddings to represent token information of 
tweets, namely Skip-grams [22], GloVe [17], ELMo [1], and the 
Bidirectional Encoder Representations from Transformers (BERT) 
[29,30]. A BERT [7] model pretrained with Microsoft Research 
Paraphrase Corpus (MRPC) has obtained the best performance 
[29,30]. Consequently, the result of FinNum-1 inspires us to further 
explore most recent Transformer [28] models pretrained with 

different datasets and tokenization schemes. In order to efficiently 
examine various pretrained models, we also apply several fine-
tuning techniques of learning rate and optimizer. 

The rest of this paper is organized as follows, in the second 
section, we will give the detail of our approaches. In the third 
section, we will show the experiment setting and results, also 
discussions on the results. In the final section, we will give 
conclusion and future works. 

2 Proposed Approaches 
For comparison, we fine-tune two Transformer models, BERT and 
XLM-RoBERTa [6]. Both pretrained models are the base versions. 
Please note that the base BERT model we use is lower-cased, but 
XLM-RoBERTa, one the other hand, always preserves letter cases. 
For the latter one, we further apply techniques developed by fastai 
[8,9] for ULMFiT [10], such as discriminative fine-tuning and a 
variation of One-cycle policy [25,26]. This section will only 
introduce model specifications and training procedures that are 
conceptually related to our attempt of the FinNum-2. Please kindly 
refer to the original papers of those models and techniques for 
further details. 

2.1 Model 1 BERT 
In the CYUT-1 run, we build a baseline system based on a 
pretrained BERT model. Pretraining of a Transformer-based 
language model typically relies on two objectives: masked 
language modeling (MLM) and next sentence prediction (NSP). 
For BERT pretraining, the former requires the model to predict 
tokens that have been randomly masked in a 15% chance per input 
sentence, and the latter demands the model to predict whether two 
randomly concatenated sentences are actually adjacent to each 
other or not. 

Before fine-tuning the BERT model, we apply a preprocessing 
strategy to the data that normalizes all cashtag instances as one 
representative tag and all numerals as one designated symbol. The 
strategy is based on an assumption that the exactly the same  
cashtags or numerals, along with their attachments, might not 
appear in the test set, so we treat them as identical ones, and then 
expect the model to be more focused on learning the patterns of the †Contact Author 
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context. After the preprocessing, we tokenize tweets with 
WordPiece [32], following the instructions of the BERT-based 
previous works [29,30] of FinNum-1, and fine-tune the model 
using HuggingFace’s Transformers [31]. 

2.2 Model 2 XLM-RoBERTa 
XLM-RoBERTa  [6] is a Transformer model trained with the 
multilingual MLM objective. The model combines and revises 
techniques of cross-lingual language model (XLM) pretraining 
schemes [16] and a robustly optimized BERT pretraining approach 
(RoBERTa) [19]. In terms of optimization, RoBERTa builds on 
BERT and modifies key hyperparameters such as the MLM 
objectives, removing the NSP objective and training with much 
larger mini-batches and learning rates. As for tokenization, it 
differs from BERT by using a byte-level Byte Pair Encoding (BPE) 
[24]  as a tokenizer, and dynamically changing the masking pattern 
applied to the training data. XLM-RoBERTa follows most of XLM 
approaches, except it removes language embeddings for a better 
code-switching ability. It also differs from RoBERTa by tokenizing 
with unigram-level sentencepiece [14,15] instead of BPE. 

2.3 Tokenization Tricks 
To better represent the structure of a financial tweet, we not only 
utilize XLM-RoBERTa’s special tokens, namely the beginning of 
a sentence (<s>), the end of a sentence (</s>), and the separator 
of sentences (</s> </s>), but also customize a couple of tokens 
in the fastai convention of “xx” prefix that provides context. For 
example, consider a tokenized tweet below: 

<s> ▁$ xxtag ▁RAD ▁about xxnum ▁9 
▁million ▁more ▁share s ▁than ▁the ▁90 
▁day ▁average . … </s> 

The special tokens xxnum and xxtag annotate the numeral (_9 but 
not _90) and the cashtag (_RAD) in question, respectively. 
Combining with the actual subwords of number/cashtag right next 
to xxnum/xxtag, the annotated tokens provide certain features of 
the token sequence. 

Although we don’t apply the default tokenizer of fastai, it might 
be worthwhile to explain what it is and why we don’t use it. The 
fastai convention of “xx” prefix denotes special context tokens. By 
default, fastai tokenizes English texts using SpaCy and inserts 
special tokens before uncapitalized or originally repeated 
words/characters1. For instance, consider the following two tweets 
from the test set: 

$TSLA DHL ordered 10 Semis … at any moments 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 

 
$FOXA … bully bully BUY BUY … 20/20 lol 

 If we apply fastai’s default tokenization to the first tweet, the 
thirty-five characters of “$” at its tail will become “xxrep 35 $” 
without loss of generality. Similarly, the second tweet’s 
tokenization outcome will have “bully bully BUY BUY” converted 

 
1 https://fastai1.fast.ai/text.transform.html#SpacyTokenizer 

into “xxwrep 2 bully xxwrep 2 xxup buy” for all-capital 
and recurring words simultaneously. As lossless as the conversion 
may be, since pretrained Transformer models are unaware of those 
special context tokens, we must ask whether they can still help fine-
tuning for a specific task or not. In our opinions, if the task were 
sentiment analysis of tweets, repetitions and capitalization could be 
important clues. However, even if the digits coming from those 
special context tokens won’t negatively impact the numeral 
attachment task, it is still hard to imagine that the lengths of 
word/character duplications can help semantically or syntactically, 
not to mention that XLM-RoBERTa already preserves letter cases 
of subword tokens. Based on the above observations, we don’t 
apply them to the FinNum-2 task. 

2.4 Fine-tuning Techniques 
We adopt recently advanced fine-tuning techniques as much as 
possible. Some of them are originally designed for AWD-LSTM 
and QRNN [20,21] by ULMFiT, such that we must assess their 
usefulness for XLM-RoBERTa. Based on our preliminary tests, 
discriminative fine-tuning and fastai’s version of one-cycle policy 
work well, but graduate unfreezing produces little effect, which is 
consistent with the findings of similar studies [11,23]. Techniques 
other than the above mainly involve choosing the most promising 
combination of optimization algorithms and loss functions. For the 
FinNum-2 task in a binary classification setting, we find none of 
more recent optimizers and loss functions work better than Adam 
optimizer with class weights. We will list configuration values of 
finally used techniques in the next section of experiments. The 
section of related works will briefly describe what optimizers and 
loss functions we have evaluated. 

2.4.1 Discriminative Fine-tuning. As different layers may 
capture various types of information, we shall fine-tune them to 
different extents. Instead of using the same learning rate for all 
layers of the model, discriminative fine-tuning enables us to tune 
each layer with different learning rates. We use blurr2 to split the 
model layers into groups automatically corresponding to 
architectures. In terms of XLM-RoBERTa, it results in four groups, 
ranging from the top layer of classifier, the pooling layer, the 
Transformer layers, to the bottom layer of embeddings. Intuitively, 
the lower groups may contain more general information while the 
higher ones contain more specific information. Therefore, we set a 
base learning rate for the top group and then assign linearly 
decreased learning rates per lower groups. 

2.4.2 One-cycle Policy. A cycle wraps an arbitrary number of 
epochs for sharing the same policy of hyperparameters, especially 
for learning rates and momentums. For training a deep neural 
network with stochastic gradient decent or similar algorithms, a 
policy of cyclical learning rates, meaning it periodically increases 
for a step size and then decreases the learning rates, may converge 
faster and better [25,26]. In addition, the fastai version of the One-
cycle Policy comprises three complementary techniques that 
balance the trade-off between fast convergence and overshooting. 
The Slanted Triangular Learning Rates (STLR) [10] and the 

2 https://ohmeow.github.io/blurr/modeling-core/#hf_splitter 
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Cyclical Momentum [25,26] allow us to micro-manage 
iterations/updates within a cycle, whereas changing maximum 
learning rate (max_lr) per cycle let us control the quality of each. 
Empirically, STLR and cyclical momentum together work best 
when they simultaneously change in a reversed direction. As 1 
shows, it uses a warm-up and annealing for the learning rate while 
doing the opposite with the momentum. 2, on the other hand, 
indicates that we apply a simply decay on max_lr per cycle. 

2.4.3 Other Optimization Schemes.  We test several optimizers 
and find none of them improve the convergence stability 
significantly than Adam [13]. For the choice of loss function, we 
realize that there’s no need to use the label smoothing function [22] 
since the FinNum-2 task is in a tyical binary classification setting. 

 3 Experiments 
In this section we report our setting for the official runs and discuss 
the results. 
 

3.1 Hyperparameters 
For CYUT-1, we run 10 epochs using a batch-size of 32, with the 
learning rate being 1e-7. Most of Adam optimizer related 
hyperparameters remain default. For CYUT-2, however, we also 
apply Mixed Precision to the optimizer, and assign a class weight 
ratio of 4.28:1 to the loss function. The ratio is simply the inverse 
of the class distributions. As for the One-cycle scheme specific to 
CYUT-2, every cycle runs one epoch in a batch-size of 8. All cycles 
share the same range of Cyclical Momentum, which uses the 
default of fastai. For the step size of STLR, we also simply let fastai 
decide it. In the following, we list the most important 

configurations of discriminative fine-tuning, i.e., the ranges of the 
learning rates and their decays among cycles: 

1. 3 cycles: 5e-4 – 5e-7 
2. 1 cycle: 5e-5 – 5e-8 
3. 1 cycle: 1e-8 – 1e-5 

One may notice that the learning rate range is always a factor of 
1000, such that the four layer-groups may roughly have the rates 
distributed evenly. However, it comes to our attention that, after the 
timing of the official runs, the version 3.3.0 and above of 
HuggingFace’s Transformers has removed the pooling layer, 
because in theory they are unrelated to classification. Should any 
reader want to reproduce the outcome, please be advised that it will 
definitely vary if using a more recent version of HuggingFace’s 
Transformers.   

3.2 Official Run and Additional Run Results 
Table 1 shows the official run results in formal run. Since we find 
that we made a mistake in our first run, we made additional runs 
after we fixed our bug. The additional run results are shown in 
Table 2. The discussions of our first run will be based on the 
additional runs. 

3.3 Run 1 Settings and Discussions 
The performance in the CYUT-1 w/o preprocessing in Table 2 can 
be seen as the performance of BERT in this problem. The F-1 
scores are about 49%. The same model can be improved greatly by 
our preprocessing strategy. The F-1 score is 86.6% for the 
development set and 62.7% for the test set. The performance of 
formal test drops greatly compares to the development test. We 
believe that this is caused by the different distribution of the data 
sets, since the average performance drop 24% as shown in the last 
row in Table 1. 

3.4 Run 2 Settings and Discussions 
The performance in the CYUT-2 is shown in Table 1. The F-1 score 
is 95.99% for the development set and 71.90% for the test set. The 

 

Figure 2:  STLR and Cyclical Momentum. Image Credit: [7] 

 

 

Figure 1: One-cycle Policy with a Max-learning-rate Decay. 
Image credit: https://github.com/bckenstler/CLR 

Table 1: Official Run Experiment Results (macro F-1 in %) [5] 

 Development Test 
Majority 44.88 44.93 
CYUT-1 48.64 48.02 
CYUT-2 95.99 71.90 
Average of 17 runs 88.18 64.11 

Table 2: Additional Run Experiment Results (macro F-1 in %) 

 Development Test 
CYUT-1 +preprocessing 86.6 62.7 
CYUT-1 49.9 49.2 
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performance of formal test also drops greatly. According to the 
overview report, the test result ranks second best [5]. The 
performance of formal test also drops greatly compares to the 
development test. 

For the performance gap, we notice that the false negatives are 
somewhat more frequent than the false positives. We wonder 
whether it means the model of CYUT-2 overfits due to the class 
weights, or the model simply don’t find any clue for the positives. 
We skim read some false negatives and find an intriguing yet 
probably representative case of a numeral “2C.” In the test set, a 
tweet uses to refer the link between global warming and the stock 
price of Tesla. In the training and the development sets, however, 
all of the “2C” and “2c” stand for “to see.” This case indicates that, 
both informal usages of tweet and the domain knowledge of stocks 
can use some more efforts. 

4. Related Works 
As aforementioned in the sub-section of fine-tuning techniques, we 
have conducted preliminary tests of optimization algorithms and 
loss functions. Due to the long training time a deep neural network 
needs, Layer-wise Adaptive Rate Scaling (LARS) [34] aims to 
implicitly adapt various learning rates for different layers of 
convolutional networks, and then evolves to amend its shortcoming 
on BERT with a new layerwise adaptive large batch optimization 
technique called LAMB [35]. As the name suggests, however, they 
are designed for relatively big size of batches for the efficiency of 
pretraining, we fail to find significant improvements using them for 
fine-tuning. The fact that we’re already using discriminative fine-
tuning may further complicate the behavior of convergence. 

Another perspective on taming the behavior of convergence is 
about stabilizing gradient updates. Lookahead [36], Rectified 
Adam [18], and Gradient Centralization [33] fall into this category. 
Ranger3 further combines them together as one optimizer. Again, 
based on our trials for the FinNum-2 task, they are neither more 
effective nor more efficient. 

Last but not least, if we see the tokenization tricks as feature 
engineering for deep neural networks, while being seldom used for 
text classification and fine-tuning, it is actually a common approach 
for text generation and pretraining. CTRL [12] and GPT-3 [2] have 
many designated “prompts” that enable conditioned generations. 
Feature Engineering done in such a preprocessing manner may be 
easier for adapting different tasks or pretrained models than 
specialized embeddings. 

5. Conclusion and Future Works 
In this paper, we report our approaches to the FinNum-2 shared task 
in NTCIR-15, we built our systems based on BERT model and 
XLM-RoBERTa model. In our CYUT-2 run, the F-1 score is 
95.99% for the development set and 71.90% for the test set. The 
test result ranks second best among all participants. It is notable that 
in both of our fixed runs and official runs, the performance of 

 
3 https://github.com/lessw2020/Ranger-Deep-Learning-Optimizer 

formal test drops greatly compares to the development test. We 
believe that this is caused by the different distribution of the data 
sets. In the future, we shall find some ways to fixed this gape. For 
example, the difference might be caused by the new terms, then the 
contemporary data might be necessary for training. On the other 
hand, the language usage might be changed, then more user data 
might be added into the training set. 
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