
CYUT at the NTCIR-15 FinNum-2 Task:
Tokenization and Fine-tuning Techniques

for Numeral Attachment in Financial Tweets
Mike Tian-Jian Jiang

 Zeals Co, Ltd.
Tokyo, Japan

tmjiang@gmail.com

Yi-Kun Chen
 Department of CSIE

 Chaoyang University of Technology
Taichung, Taiwan

kun26712930@gmail.com

 Shih-Hung Wu†
 Department of CSIE

 Chaoyang University of Technology
Taichung, Taiwan

 shwu@cyut.edu.tw

ABSTRACT
The paper describes our submissions to the NTCIR-15-FinNum-2
shared task in financial tweets analysis. We submitted two runs in
the final test. The first run is our baseline system, which is based
on the BERT model with our preprocessing strategy. The second
run is our fine-tuned system based on the XLM-RoBERTa
pretraining model with more tokenization and fine-tuning
techniques. The macro-F1 of run 2 is 95.99% on development set,
and 71.90% on formal test which ranked second best.

CCS CONCEPTS
• Information systems→Information extraction.

KEYWORDS
Financial social media, Financial tweets, BERT, XLM-RoBERTa.

TEAM NAME
CYUT

1 Introduction
FinNum-2 is a shared task to analyze financial tweets, these tweets
are discussing stock prices and the companies [5]. There are many
stock names and many numbers in these tweets. The goal of the
shared task is to uncover whether names and numbers in a tweet
associates or not. In the training data, we can see that there is at
least one pair of target numeral and cashtag in a tweet, therefore the
problem definition can be a binary classification to tell if the target
numeral is relevant to the given cashtag.

Most submissions of NTCIR-14 FinNum-1 [3,4] use
word/character embeddings to represent token information of
tweets, namely Skip-grams [22], GloVe [17], ELMo [1], and the
Bidirectional Encoder Representations from Transformers (BERT)
[29,30]. A BERT [7] model pretrained with Microsoft Research
Paraphrase Corpus (MRPC) has obtained the best performance
[29,30]. Consequently, the result of FinNum-1 inspires us to further
explore most recent Transformer [28] models pretrained with

different datasets and tokenization schemes. In order to efficiently
examine various pretrained models, we also apply several fine-
tuning techniques of learning rate and optimizer.

The rest of this paper is organized as follows, in the second
section, we will give the detail of our approaches. In the third
section, we will show the experiment setting and results, also
discussions on the results. In the final section, we will give
conclusion and future works.

2 Proposed Approaches
For comparison, we fine-tune two Transformer models, BERT and
XLM-RoBERTa [6]. Both pretrained models are the base versions.
Please note that the base BERT model we use is lower-cased, but
XLM-RoBERTa, one the other hand, always preserves letter cases.
For the latter one, we further apply techniques developed by fastai
[8,9] for ULMFiT [10], such as discriminative fine-tuning and a
variation of One-cycle policy [25,26]. This section will only
introduce model specifications and training procedures that are
conceptually related to our attempt of the FinNum-2. Please kindly
refer to the original papers of those models and techniques for
further details.

2.1 Model 1 BERT
In the CYUT-1 run, we build a baseline system based on a
pretrained BERT model. Pretraining of a Transformer-based
language model typically relies on two objectives: masked
language modeling (MLM) and next sentence prediction (NSP).
For BERT pretraining, the former requires the model to predict
tokens that have been randomly masked in a 15% chance per input
sentence, and the latter demands the model to predict whether two
randomly concatenated sentences are actually adjacent to each
other or not.

Before fine-tuning the BERT model, we apply a preprocessing
strategy to the data that normalizes all cashtag instances as one
representative tag and all numerals as one designated symbol. The
strategy is based on an assumption that the exactly the same
cashtags or numerals, along with their attachments, might not
appear in the test set, so we treat them as identical ones, and then
expect the model to be more focused on learning the patterns of the †Contact Author

NTCIR 15 Conference: Proceedings of the 15th NTCIR Conference on Evaluation of Information Access Technologies, December 8-11, 2020 Tokyo Japan

92

NTCIR-15, December, 2020, Tokyo, Japan M. T.-J. Jiang et al.

context. After the preprocessing, we tokenize tweets with
WordPiece [32], following the instructions of the BERT-based
previous works [29,30] of FinNum-1, and fine-tune the model
using HuggingFace’s Transformers [31].

2.2 Model 2 XLM-RoBERTa
XLM-RoBERTa [6] is a Transformer model trained with the
multilingual MLM objective. The model combines and revises
techniques of cross-lingual language model (XLM) pretraining
schemes [16] and a robustly optimized BERT pretraining approach
(RoBERTa) [19]. In terms of optimization, RoBERTa builds on
BERT and modifies key hyperparameters such as the MLM
objectives, removing the NSP objective and training with much
larger mini-batches and learning rates. As for tokenization, it
differs from BERT by using a byte-level Byte Pair Encoding (BPE)
[24] as a tokenizer, and dynamically changing the masking pattern
applied to the training data. XLM-RoBERTa follows most of XLM
approaches, except it removes language embeddings for a better
code-switching ability. It also differs from RoBERTa by tokenizing
with unigram-level sentencepiece [14,15] instead of BPE.

2.3 Tokenization Tricks
To better represent the structure of a financial tweet, we not only
utilize XLM-RoBERTa’s special tokens, namely the beginning of
a sentence (<s>), the end of a sentence (</s>), and the separator
of sentences (</s> </s>), but also customize a couple of tokens
in the fastai convention of “xx” prefix that provides context. For
example, consider a tokenized tweet below:

<s> ▁$ xxtag ▁RAD ▁about xxnum ▁9
▁million ▁more ▁share s ▁than ▁the ▁90
▁day ▁average . … </s>

The special tokens xxnum and xxtag annotate the numeral (_9 but
not _90) and the cashtag (_RAD) in question, respectively.
Combining with the actual subwords of number/cashtag right next
to xxnum/xxtag, the annotated tokens provide certain features of
the token sequence.

Although we don’t apply the default tokenizer of fastai, it might
be worthwhile to explain what it is and why we don’t use it. The
fastai convention of “xx” prefix denotes special context tokens. By
default, fastai tokenizes English texts using SpaCy and inserts
special tokens before uncapitalized or originally repeated
words/characters1. For instance, consider the following two tweets
from the test set:

$TSLA DHL ordered 10 Semis … at any moments
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

$FOXA … bully bully BUY BUY … 20/20 lol

 If we apply fastai’s default tokenization to the first tweet, the
thirty-five characters of “$” at its tail will become “xxrep 35 $”
without loss of generality. Similarly, the second tweet’s
tokenization outcome will have “bully bully BUY BUY” converted

1 https://fastai1.fast.ai/text.transform.html#SpacyTokenizer

into “xxwrep 2 bully xxwrep 2 xxup buy” for all-capital
and recurring words simultaneously. As lossless as the conversion
may be, since pretrained Transformer models are unaware of those
special context tokens, we must ask whether they can still help fine-
tuning for a specific task or not. In our opinions, if the task were
sentiment analysis of tweets, repetitions and capitalization could be
important clues. However, even if the digits coming from those
special context tokens won’t negatively impact the numeral
attachment task, it is still hard to imagine that the lengths of
word/character duplications can help semantically or syntactically,
not to mention that XLM-RoBERTa already preserves letter cases
of subword tokens. Based on the above observations, we don’t
apply them to the FinNum-2 task.

2.4 Fine-tuning Techniques
We adopt recently advanced fine-tuning techniques as much as
possible. Some of them are originally designed for AWD-LSTM
and QRNN [20,21] by ULMFiT, such that we must assess their
usefulness for XLM-RoBERTa. Based on our preliminary tests,
discriminative fine-tuning and fastai’s version of one-cycle policy
work well, but graduate unfreezing produces little effect, which is
consistent with the findings of similar studies [11,23]. Techniques
other than the above mainly involve choosing the most promising
combination of optimization algorithms and loss functions. For the
FinNum-2 task in a binary classification setting, we find none of
more recent optimizers and loss functions work better than Adam
optimizer with class weights. We will list configuration values of
finally used techniques in the next section of experiments. The
section of related works will briefly describe what optimizers and
loss functions we have evaluated.

2.4.1 Discriminative Fine-tuning. As different layers may
capture various types of information, we shall fine-tune them to
different extents. Instead of using the same learning rate for all
layers of the model, discriminative fine-tuning enables us to tune
each layer with different learning rates. We use blurr2 to split the
model layers into groups automatically corresponding to
architectures. In terms of XLM-RoBERTa, it results in four groups,
ranging from the top layer of classifier, the pooling layer, the
Transformer layers, to the bottom layer of embeddings. Intuitively,
the lower groups may contain more general information while the
higher ones contain more specific information. Therefore, we set a
base learning rate for the top group and then assign linearly
decreased learning rates per lower groups.

2.4.2 One-cycle Policy. A cycle wraps an arbitrary number of
epochs for sharing the same policy of hyperparameters, especially
for learning rates and momentums. For training a deep neural
network with stochastic gradient decent or similar algorithms, a
policy of cyclical learning rates, meaning it periodically increases
for a step size and then decreases the learning rates, may converge
faster and better [25,26]. In addition, the fastai version of the One-
cycle Policy comprises three complementary techniques that
balance the trade-off between fast convergence and overshooting.
The Slanted Triangular Learning Rates (STLR) [10] and the

2 https://ohmeow.github.io/blurr/modeling-core/#hf_splitter

NTCIR 15 Conference: Proceedings of the 15th NTCIR Conference on Evaluation of Information Access Technologies, December 8-11, 2020 Tokyo Japan

93

CYUT at the NTCIR-15 FinNum-2 Task NTCIR-15, December, 2020, Tokyo, Japan

Cyclical Momentum [25,26] allow us to micro-manage
iterations/updates within a cycle, whereas changing maximum
learning rate (max_lr) per cycle let us control the quality of each.
Empirically, STLR and cyclical momentum together work best
when they simultaneously change in a reversed direction. As 1
shows, it uses a warm-up and annealing for the learning rate while
doing the opposite with the momentum. 2, on the other hand,
indicates that we apply a simply decay on max_lr per cycle.

2.4.3 Other Optimization Schemes. We test several optimizers
and find none of them improve the convergence stability
significantly than Adam [13]. For the choice of loss function, we
realize that there’s no need to use the label smoothing function [22]
since the FinNum-2 task is in a tyical binary classification setting.

 3 Experiments
In this section we report our setting for the official runs and discuss
the results.

3.1 Hyperparameters
For CYUT-1, we run 10 epochs using a batch-size of 32, with the
learning rate being 1e-7. Most of Adam optimizer related
hyperparameters remain default. For CYUT-2, however, we also
apply Mixed Precision to the optimizer, and assign a class weight
ratio of 4.28:1 to the loss function. The ratio is simply the inverse
of the class distributions. As for the One-cycle scheme specific to
CYUT-2, every cycle runs one epoch in a batch-size of 8. All cycles
share the same range of Cyclical Momentum, which uses the
default of fastai. For the step size of STLR, we also simply let fastai
decide it. In the following, we list the most important

configurations of discriminative fine-tuning, i.e., the ranges of the
learning rates and their decays among cycles:

1. 3 cycles: 5e-4 – 5e-7
2. 1 cycle: 5e-5 – 5e-8
3. 1 cycle: 1e-8 – 1e-5

One may notice that the learning rate range is always a factor of
1000, such that the four layer-groups may roughly have the rates
distributed evenly. However, it comes to our attention that, after the
timing of the official runs, the version 3.3.0 and above of
HuggingFace’s Transformers has removed the pooling layer,
because in theory they are unrelated to classification. Should any
reader want to reproduce the outcome, please be advised that it will
definitely vary if using a more recent version of HuggingFace’s
Transformers.

3.2 Official Run and Additional Run Results
Table 1 shows the official run results in formal run. Since we find
that we made a mistake in our first run, we made additional runs
after we fixed our bug. The additional run results are shown in
Table 2. The discussions of our first run will be based on the
additional runs.

3.3 Run 1 Settings and Discussions
The performance in the CYUT-1 w/o preprocessing in Table 2 can
be seen as the performance of BERT in this problem. The F-1
scores are about 49%. The same model can be improved greatly by
our preprocessing strategy. The F-1 score is 86.6% for the
development set and 62.7% for the test set. The performance of
formal test drops greatly compares to the development test. We
believe that this is caused by the different distribution of the data
sets, since the average performance drop 24% as shown in the last
row in Table 1.

3.4 Run 2 Settings and Discussions
The performance in the CYUT-2 is shown in Table 1. The F-1 score
is 95.99% for the development set and 71.90% for the test set. The

Figure 2: STLR and Cyclical Momentum. Image Credit: [7]

Figure 1: One-cycle Policy with a Max-learning-rate Decay.
Image credit: https://github.com/bckenstler/CLR

Table 1: Official Run Experiment Results (macro F-1 in %) [5]

 Development Test
Majority 44.88 44.93
CYUT-1 48.64 48.02
CYUT-2 95.99 71.90
Average of 17 runs 88.18 64.11

Table 2: Additional Run Experiment Results (macro F-1 in %)

 Development Test
CYUT-1 +preprocessing 86.6 62.7
CYUT-1 49.9 49.2

NTCIR 15 Conference: Proceedings of the 15th NTCIR Conference on Evaluation of Information Access Technologies, December 8-11, 2020 Tokyo Japan

94

NTCIR-15, December, 2020, Tokyo, Japan M. T.-J. Jiang et al.

performance of formal test also drops greatly. According to the
overview report, the test result ranks second best [5]. The
performance of formal test also drops greatly compares to the
development test.

For the performance gap, we notice that the false negatives are
somewhat more frequent than the false positives. We wonder
whether it means the model of CYUT-2 overfits due to the class
weights, or the model simply don’t find any clue for the positives.
We skim read some false negatives and find an intriguing yet
probably representative case of a numeral “2C.” In the test set, a
tweet uses to refer the link between global warming and the stock
price of Tesla. In the training and the development sets, however,
all of the “2C” and “2c” stand for “to see.” This case indicates that,
both informal usages of tweet and the domain knowledge of stocks
can use some more efforts.

4. Related Works
As aforementioned in the sub-section of fine-tuning techniques, we
have conducted preliminary tests of optimization algorithms and
loss functions. Due to the long training time a deep neural network
needs, Layer-wise Adaptive Rate Scaling (LARS) [34] aims to
implicitly adapt various learning rates for different layers of
convolutional networks, and then evolves to amend its shortcoming
on BERT with a new layerwise adaptive large batch optimization
technique called LAMB [35]. As the name suggests, however, they
are designed for relatively big size of batches for the efficiency of
pretraining, we fail to find significant improvements using them for
fine-tuning. The fact that we’re already using discriminative fine-
tuning may further complicate the behavior of convergence.

Another perspective on taming the behavior of convergence is
about stabilizing gradient updates. Lookahead [36], Rectified
Adam [18], and Gradient Centralization [33] fall into this category.
Ranger3 further combines them together as one optimizer. Again,
based on our trials for the FinNum-2 task, they are neither more
effective nor more efficient.

Last but not least, if we see the tokenization tricks as feature
engineering for deep neural networks, while being seldom used for
text classification and fine-tuning, it is actually a common approach
for text generation and pretraining. CTRL [12] and GPT-3 [2] have
many designated “prompts” that enable conditioned generations.
Feature Engineering done in such a preprocessing manner may be
easier for adapting different tasks or pretrained models than
specialized embeddings.

5. Conclusion and Future Works
In this paper, we report our approaches to the FinNum-2 shared task
in NTCIR-15, we built our systems based on BERT model and
XLM-RoBERTa model. In our CYUT-2 run, the F-1 score is
95.99% for the development set and 71.90% for the test set. The
test result ranks second best among all participants. It is notable that
in both of our fixed runs and official runs, the performance of

3 https://github.com/lessw2020/Ranger-Deep-Learning-Optimizer

formal test drops greatly compares to the development test. We
believe that this is caused by the different distribution of the data
sets. In the future, we shall find some ways to fixed this gape. For
example, the difference might be caused by the new terms, then the
contemporary data might be necessary for training. On the other
hand, the language usage might be changed, then more user data
might be added into the training set.

ACKNOWLEDGMENTS
This study was supported by the Ministry of Science and
Technology under the grant number MOST 109-2221-E-324-024.

REFERENCES
[1] Abderrahim Ait Azzi and Houda Bouamor. 2019. Fortia1@ the NTCIR-14

FinNum task: enriched sequence labeling for numeral classification. (2019).
[2] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, and others. 2020. Language models are few-shot learners. arXiv preprint
arXiv:2005.14165 (2020).

[3] Chung-Chi Chen, Hen-Hsen Huang, Hiroya Takamura, and Hsin-Hsi Chen.
2019. Overview of the NTCIR-14 FinNum Task: Fine-grained Numeral
Understanding in Financial Social Media Data. In Proceedings of the 14th NTCIR
Conference on Evaluation of Information Access Technologies, 19–27.

[4] Chung-Chi Chen, Hen-Hsen Huang, Hiroya Takamura, and Hsin-Hsi Chen.
2019. Final Report of the NTCIR-14 FinNum Task: Challenges and Current
Status of Fine-Grained Numeral Understanding in Financial Social Media Data.
In NII Conference on Testbeds and Community for Information Access Research,
Springer, 183–192.

[5] Chung-Chi Chen, Hen-Hsen Huang, Hiroya Takamura, and Hsin-Hsi Chen.
2020. Overview of the NTCIR-15 FinNum-2 Task: Numeral Attachment in
Financial Tweets. In Proceedings of the 15th NTCIR Conference on Evaluation
of Information Access Technologies, 0–0.

[6] Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary,
Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke
Zettlemoyer, and Veselin Stoyanov. 2020. Unsupervised Cross-lingual
Representation Learning at Scale. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, Association for Computational
Linguistics, Online, 8440–8451. DOI:https://doi.org/10.18653/v1/2020.acl-
main.747

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019.
BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding. In Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), Association for Computational
Linguistics, Minneapolis, Minnesota, 4171–4186.
DOI:https://doi.org/10.18653/v1/N19-1423

[8] Jeremy Howard and Sylvain Gugger. 2020. Fastai: A Layered API for Deep
Learning. Information 11, 2 (February 2020), 108.
DOI:https://doi.org/10.3390/info11020108

[9] Jeremy Howard, Sylvain Gugger, Soumith Chintala, and an O’Reilly Media
Company Safari. 2020. Deep learning for coders with fastai and PyTorch: AI
applications without a PhD.

[10] Jeremy Howard and Sebastian Ruder. 2018. Universal Language Model Fine-
tuning for Text Classification. In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), Association
for Computational Linguistics, Melbourne, Australia, 328–339.
DOI:https://doi.org/10.18653/v1/P18-1031

[11] Hairong Huo and Mizuho Iwaihara. 2020. Utilizing BERT Pretrained Models
with Various Fine-Tune Methods for Subjectivity Detection. In Web and Big
Data, Springer International Publishing, Cham, 270–284.

[12] Nitish Shirish Keskar, Bryan McCann, Lav Varshney, Caiming Xiong, and
Richard Socher. 2019. CTRL - A Conditional Transformer Language Model for
Controllable Generation. arXiv preprint arXiv:1909.05858 (2019).

[13] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic
Optimization. In 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.
Retrieved from http://arxiv.org/abs/1412.6980

[14] Taku Kudo. 2018. Subword Regularization: Improving Neural Network
Translation Models with Multiple Subword Candidates. In Proceedings of the
56th Annual Meeting of the Association for Computational Linguistics (Volume

NTCIR 15 Conference: Proceedings of the 15th NTCIR Conference on Evaluation of Information Access Technologies, December 8-11, 2020 Tokyo Japan

95

CYUT at the NTCIR-15 FinNum-2 Task NTCIR-15, December, 2020, Tokyo, Japan

1: Long Papers), Association for Computational Linguistics, 66–75. Retrieved
from http://aclweb.org/anthology/P18-1007

[15] Taku Kudo and John Richardson. 2018. SentencePiece: A simple and language
independent subword tokenizer and detokenizer for Neural Text Processing. In
Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, 66–71.

[16] Guillaume Lample and Alexis Conneau. 2019. Cross-lingual Language Model
Pretraining. Advances in Neural Information Processing Systems (NeurIPS)
(2019).

[17] Chao-Chun Liang and Keh-Yih Su. 2019. ASNLU at the NTCIR-14 FinNum
task: incorporating knowledge into DNN for financial numeral classification. In
Proceedings of the 14th NTCIR Conference on Evaluation of Information Access
Technologies.

[18] Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu,
Jianfeng Gao, and Jiawei Han. 2020. On the Variance of the Adaptive Learning
Rate and Beyond. In International Conference on Learning Representations.
Retrieved from https://openreview.net/forum?id=rkgz2aEKDr

[19] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen,
Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A Robustly Optimized BERT Pretraining Approach. CoRR
abs/1907.11692, (2019). Retrieved from http://arxiv.org/abs/1907.11692

[20] Stephen Merity, Nitish Shirish Keskar, and Richard Socher. 2018. Regularizing
and Optimizing LSTM Language Models. In International Conference on
Learning Representations. Retrieved from
https://openreview.net/forum?id=SyyGPP0TZ

[21] Stephen Merity, Nitish Shirish Keskar, and Richard Socher. 2018. An Analysis
of Neural Language Modeling at Multiple Scales. CoRR abs/1803.08240, (2018).
Retrieved from http://arxiv.org/abs/1803.08240

[22] Rafael Müller, Simon Kornblith, and Geoffrey E Hinton. 2019. When does label
smoothing help? In Advances in Neural Information Processing Systems, 4694–
4703.

[23] Matthew E. Peters, Sebastian Ruder, and Noah A. Smith. 2019. To Tune or Not
to Tune? Adapting Pretrained Representations to Diverse Tasks. In Proceedings
of the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019),
Association for Computational Linguistics, Florence, Italy, 7–14.
DOI:https://doi.org/10.18653/v1/W19-4302

[24] Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Neural Machine
Translation of Rare Words with Subword Units. In Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), Association for Computational Linguistics, Berlin, Germany,
1715–1725. DOI:https://doi.org/10.18653/v1/P16-1162

[25] Leslie N. Smith. 2017. Cyclical Learning Rates for Training Neural Networks. In
2017 IEEE Winter Conference on Applications of Computer Vision (WACV),
464–472. DOI:https://doi.org/10.1109/WACV.2017.58

[26] Leslie N Smith. 2018. A disciplined approach to neural network hyper-
parameters: Part 1 – learning rate, batch size, momentum, and weight decay.
arXiv.org (2018). Retrieved from http://arxiv.org/abs/1803.09820

[27] Alan Spark. BRNIR at the NTCIR-14 finnum task: Scalable feature extraction
technique for number classification⋆.

[28] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, \Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All You
Need. In Advances in neural information processing systems, 5998–6008.

[29] Wei Wang, Maofu Liu, Yukun Zhang, Junyi Xiang, and Ruibin Mao. 2019.
Financial Numeral Classification Model Based on BERT. In NII Testbeds and
Community for Information Access Research - 14th International Conference,
NTCIR 2019, Tokyo, Japan, June 10-13, 2019, Revised Selected Papers (Lecture
Notes in Computer Science), Springer, 193–204.
DOI:https://doi.org/10.1007/978-3-030-36805-0_15

[30] Wei Wang, Maofu Liu, and Zhenlian Zhang. 2019. WUST at the NTCIR-14
FinNum Task. In Proceedings of the 14th NTCIR Conference on Evaluation of
Information Access Technologies.

[31] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement
Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan
Funtowicz, and Jamie Brew. 2019. HuggingFace’s Transformers: State-of-the-
art Natural Language Processing. CoRR abs/1910.03771, (2019). Retrieved from
http://arxiv.org/abs/1910.03771

[32] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff
Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan
Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, George
Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa, Alex
Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey Dean. 2016.
Google’s Neural Machine Translation System: Bridging the Gap between Human
and Machine Translation. CoRR abs/1609.08144, (2016). Retrieved from
http://arxiv.org/abs/1609.08144

[33] Hongwei Yong, Jianqiang Huang, Xiansheng Hua, and Lei Zhang. 2020.
Gradient Centralization: A New Optimization Technique for Deep Neural
Networks.

[34] Yang You, Igor Gitman, and Boris Ginsburg. 2017. Large batch training of
convolutional networks. arXiv preprint arXiv:1708.03888 (2017).

[35] Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh
Bhojanapalli, Xiaodan Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh.
2020. Large Batch Optimization for Deep Learning: Training BERT in 76
minutes. In International Conference on Learning Representations. Retrieved
from https://openreview.net/forum?id=Syx4wnEtvH

[36] Michael Zhang, James Lucas, Jimmy Ba, and Geoffrey E Hinton. 2019.
Lookahead optimizer: k steps forward, 1 step back. In Advances in Neural
Information Processing Systems, 9597–9608.

NTCIR 15 Conference: Proceedings of the 15th NTCIR Conference on Evaluation of Information Access Technologies, December 8-11, 2020 Tokyo Japan

96

