Summary

- We participated in the **SHINRA2020-ML Task**: mapping Wikipedia entities into Extended Named Entity (ENE) categories.
- Our model was trained to capture multiple aspects of Wikipedia articles: **text, structured knowledge, images, page layout** and the ENE class hierarchy.
- Our system ranked first in four languages, achieving an F1-score of 82.73 on the English subtask.

Our System Overview

Document representation:

$ e = \text{FFNN}(e_{\text{BERT}} \oplus e_{\text{KG}} \oplus e_{\text{VL}} \oplus e_{\text{SS}} \oplus e_{\text{CH}})$

- BERT encoder [1] for pure textual information (e_{BERT})
- A set of separately-trained document representations that encodes different aspects of a given document: knowledge graph features (e_{KG}), text and images (e_{VL}), page screenshot layout (e_{SS}), and ENE class hierarchy (e_{CH})

Label probability: $p(c, e) = \sigma(w_c^Te + b_c)$

- BERT encoder is fine-tuned while training the classifier
- Other document representations are separately trained, and fixed during training of the final classifier

Knowledge graph (e_{KG})

- We use pre-trained embeddings of a Wikidata graph [3]
- The wikibase.item field of the Wikipedia dump is used to identify the Wikidata entity corresponding to a Wikipedia article
- 98.3% of English Wikipedia articles have corresponding Wikidata entries

Text–image representation (e_{VL})

- Multiple images are rescaled and concatenated to compose a single large image;
 individual images are treated as regions-of-interest (ROIs)
- The VL-BERT model is fine-tuned on the SHINRA2020-ML task and used to generate the text–image representation

Page screenshot layout (e_{SS})

- We obtain visual renderings of Wikipedia articles from a Wikipedia dump and generate their screenshots
- The screenshots are resized to a fixed size and fed into *INCEPTION* (Inception V3 with different convolution filters) [5] to obtain visual representations

ENE class hierarchy (e_{CH})

- We employ a hierarchy-aware global model (HiGAM) [6] to capture the label hierarchy and correlations between ENE categories
- Textual representation of a document is fed into a Hierarchy-GCN [2], where each node of the hierarchy graph represents an ENE category, and each directed edge represents either hierarchical relational information or correlation information, to obtain hierarchy-aware embeddings
- The encoder is trained with binary cross-entropy loss over the hierarchical label space

Results

Official evaluation results (English)

<table>
<thead>
<tr>
<th>Submission name</th>
<th>F1</th>
<th>R</th>
<th>F1 Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>jointrep</td>
<td>81.77</td>
<td>83.71</td>
<td>82.73</td>
</tr>
<tr>
<td>jointrepPostprocess</td>
<td>81.46</td>
<td>83.71</td>
<td>82.57</td>
</tr>
<tr>
<td>jointrepUnionPostprocess</td>
<td>80.66</td>
<td>84.80</td>
<td>82.68</td>
</tr>
<tr>
<td>Other teams best</td>
<td>79.65</td>
<td>85.00</td>
<td>82.23</td>
</tr>
</tbody>
</table>

Official evaluation results (Other languages*, F1)

<table>
<thead>
<tr>
<th>Language</th>
<th>F1</th>
<th>R</th>
<th>F1 Rank</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>ar</td>
<td>64.55</td>
<td>83.07</td>
<td>79.62</td>
<td>81.29</td>
</tr>
<tr>
<td>Others best</td>
<td>75.27</td>
<td>83.77</td>
<td>76.28</td>
<td>84.47</td>
</tr>
</tbody>
</table>

Analysis

Ablation study (leaderboard results, jointrep, English)

<table>
<thead>
<tr>
<th></th>
<th>Full</th>
<th>e_{KG}</th>
<th>e_{VL}</th>
<th>e_{SS}</th>
<th>e_{CH}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>\mathcal{F}_1</td>
<td>75.7</td>
<td>75.2</td>
<td>74.8</td>
<td>76.0</td>
</tr>
<tr>
<td></td>
<td>\mathcal{F}_1</td>
<td>75.5</td>
<td>75.2</td>
<td>74.8</td>
<td>76.0</td>
</tr>
</tbody>
</table>

Common error patterns

- Confusion between **CONCEPT** and other classes, e.g. 1.7.21: Doctrine,Method
- Informatin mismatch: some information in the corresponding Japanese article is missing in the target article, and vice versa
- Page redirects to a different entity, e.g. Tailoring → Tailor

References

