THUIR at the NTCIR-15 WWW-3 Task

Zhumin Chu, Jingtao Zhan, Xiangsheng Li, Jiaxin Mao, Yiqun Liu*, Min Zhang, and Shaoping Ma
Department of Computer Science and Technology, Institute for Artificial Intelligence, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China
Beijing, China
yiqunliu@tsinghua.edu.cn

ABSTRACT
The THUIR team participated in both Chinese and English subtasks of the NTCIR-15 We Want Web-3 (WWW-3) task. This paper describes our approaches and results in the WWW-3 task. In the Chinese subtask, we tried two kinds of neural ranking models based on BERT, as well as a revived SDMM model. In the English subtask, we revived three learning-to-rank runs and a BM25 run we submitted in WWW-2 English subtask, we also tried a new ranking system based on BERT.

TEAM NAME
THUIR

SUBTASKS
Chinese, English

1 INTRODUCTION
Ad hoc Web search is a long-established research topic in information retrieval. From the traditional BM25[16], language models[21], towards a series of learning-to-rank models[9], and the newest deep learning models[5–7], many researchers have focused on improving the performance of Web retrieval.

We Want Web (WWW) is a series of ad hoc web search tasks, which improves communication among the researchers in the community. In the tasks, provided with topics and their descriptions set, as well as baseline ranking results, we need to return a ranking list under each query, to improve the ranking performance.

In this round of the NTCIR-15 WWW-3 task[17], we participated in both Chinese and English subtasks. In the Chinese subtask, we tried two kinds of neural ranking models based on BERT[5], as well as a revived SDMM model. We found that the reranking depths can greatly affect performance in the BERT model, using a smaller depth might lead to better performance. In the English subtask, we revived three learning-to-rank runs and a BM25 run we submitted in WWW-2 English subtask, we also implemented a new ranking model based on BERT. The results show that the learning-to-rank models perform better than BM25, but the BERT model does not perform as well as expected because the training set is limited.

2 CHINESE SUBTASK

2.1 BERT on Document Content (BERT-DC)
BERT [5] has been widely adopted in ranking tasks [13, 14]. Benefitted from the pretrain stage and Transformer architecture, it significantly outperforms other neural ranking methods and traditional IR techniques [3]. Thus we utilize it for the WWW-3 Chinese task. We exploit SogouQCL [24] as our training data and finetune the BERT model on the content and titles of documents, respectively.

Recently, several works [8, 22, 23] suggest that BERT’s modeling process of document and query can be decoupled with minor influence on its ranking performance. Inspired by these works, we mask the attention from document towards query. In other words, the modeling process of document is independent of query but the query can still interact with document tokens in each layer. We ensemble this masked version of BERT with vanilla BERT as our final model.

We implement our models based on a widely-used library of transformers [18]. Most hyper-parameter settings are the same as Rodrigo et al. [13]. We adopt the bert-base-chinese model and finetune all the models for 300,000 steps with sigmoid loss and a batch size of 80. Our experiments show that the optimal reranking depth is closely related to the dataset. For the NTCIR-14 Chinese task [11] and the NTCIR-13 Chinese task [10] task, BERT-DC performs best with a reranking depth of 100 and 40, respectively. We tuned the reranking depths on the NTCIR-14 Chinese task, and finally used depths of 70, 100, and 120 in our submitted runs.

2.2 BERT on Document Title (BERT-DT)
To validate that the training source must be consistent during training and testing, we also train the BERT model on the document title. In this section, we use Tiangong-ST [2], which provides session logs with click labels. The document title is used to train BERT. The maximal length of the document title is set as 15. Query and document title is concatenated as the input for the bert-base-chinese model. We train this model for 300,000 steps with pairwise hinge loss and a batch size of 80.

2.3 Revived model on NTCIR-14 (SDMM)
The revived model is based on the Simple Deep Matching Model (SDMM) on NTCIR-14, which achieves the best-ranking performance in the NTCIR-14 Chinese task. We use the same trained model to generate a run for the queries on NTCIR-15. The result in THUIR-C-CO-REV-5 in Table 1.
2.4 Results
The results of BERT-DC model are shown in Table 1 (THUIR 1-3 runs). The three submitted runs use the same BERT-DC model but different reranking depths. The results show that the reranking depths greatly affect ranking performance. The THUIR-C-CO-NEW-2 run performs best due to its smallest reranking depth. Thus, we assume using a smaller reranking depth may lead to better ranking performance.

In a comparison of document content and title, we can find that BERT trained on the title is not as good as that on document content. It illustrates that the training source should be consistent during training and testing.

The revived model, which achieves best-ranking performance in the NTCIR-14 Chinese task, performs worse than BERT-DC. It illustrates that BERT, with powerful learning capacity to learning the interaction between query and document, can achieve marginal improvement than a simple deep IR model.

3 ENGLISH SUBTASK

In the WWW-3 English subtask, we have submitted three learning-to-rank runs (revived runs), one neural model run (new run), and one fine-grained BM25 run (replicated run). We’ll introduce the details about our runs in this section.

3.1 Data Preprocess

To better feature extraction and token embedding, we conducted a very detailed data preprocessing job. We parsed the HTML documents with the bs4 package, to obtain the context of four fields: the whole HTML content, the uniform resource locator (URL) of this HTML, the anchor texts, and the title. We ignored the <script> and <style> tags in the HTML documents, to make the procedure more robust.

Then, for the contexts of each field, we adopted some natural language processing methods to make them more standard. The methods include lowercase, stop words deleting, and stemming. We also split the URL information in the content, to make them become a series of terms rather than a whole. For example, for the URL ‘https://www.baidu.com’, we split it into four terms: ‘https’, ‘www’, ‘baidu’, ‘com’. We assumed that this procedure can improve system performance, especially in navigational queries. Also, we adopted the same preprocessing procedures towards the contents of the queries, to make them the same.

As for the data preprocessing procedure, there are two details to explain here. The first is the difference between the preprocessing for the feature extraction and the token embedding. As many pre-trained token embedding undo the stop words deleting and stemming procedure while training, as their pre-trained corpus is large enough to be the inclusion of information redundancy in the original data. So these two steps are omitted when feeding the preprocessed result to the token embedding procedure. Another detail is about the MQ2007 and MQ2008 datasets[15]. We found that the queries content of these two datasets has already been stemmed. So we conduct the counter-stemming step for the queries content, to make the same format with the token set.

3.2 Feature Extraction

Features are quite important for learning-to-rank systems. For each pair of query and document, we have extracted 8 features in each field, that is totally 4×8 = 32 features. These eight types of features include Term Frequency (TF), Inverse Document Frequency (IDF), TF-IDF, Document Length (DL), BM25, LMIR.ABS, LMIR.DIR, LMIR.JM. The calculation formula for the BM25 score shows in the Eq. 1, and we set the parameter $k_1 = 1.2$, $k_2 = 100$, $b = 0.75$. Also, the language model can be calculated with the formula Eq. 2. The details and parameter selection can be seen in Zhai et al.’s work[21].

$$BM25(d, q) = \sum_{i=1}^{M} \frac{IDF(t_i) \cdot TF(t_i, d) \cdot (k_1 + 1)}{TF(t_i, d) + k_1 \cdot \frac{1 - b + b \cdot \frac{\text{len}(d)}{\text{avgdl}}}{k_2}}$$

$$\log p(q|d) = \sum_{i: (q_i, d) > 0} \log \frac{p_s(q_i|d)}{a_d p(q_i|C)} + n \log a_d + \sum_{i} \log p(q_i|C)$$

It is worth mentioning that we used a part of the ClueWeb12 data set (about 5,000,000 HTML documents) as a background data set to obtain IDF and BM25 features, making that these features become more representative.

3.3 Learning-to-Rank Systems

We can regard the learning-to-rank systems as a black-box model. We feed the features of the sample queries and their corresponding documents to the systems, after a series of the parameter optimization process, the systems return a model to predict the ranking list of the given queries. In our work, we tried three types of learning-to-rank models: LambdaMART[1, 19], Coordinate Ascent[12] and AdaRank[20], and used the Ranklib[4] package to implement them.

<table>
<thead>
<tr>
<th>Model</th>
<th>RUN</th>
<th>ReRank Depth</th>
<th>nDCG</th>
<th>Q</th>
<th>ERR</th>
<th>iRBU</th>
</tr>
</thead>
<tbody>
<tr>
<td>BERT-DC</td>
<td>THUIR-C-CO-NEW-2</td>
<td>70</td>
<td>0.4112</td>
<td>0.3525</td>
<td>0.5706</td>
<td>0.7751</td>
</tr>
<tr>
<td>BERT-DC</td>
<td>THUIR-C-CO-NEW-1</td>
<td>100</td>
<td>0.4051</td>
<td>0.3464</td>
<td>0.5489</td>
<td>0.7493</td>
</tr>
<tr>
<td>BERT-DC</td>
<td>THUIR-C-CO-NEW-3</td>
<td>120</td>
<td>0.3940</td>
<td>0.3325</td>
<td>0.5169</td>
<td>0.7356</td>
</tr>
<tr>
<td>BERT-DT</td>
<td>THUIR-C-CO-REV-5</td>
<td>100</td>
<td>0.2705</td>
<td>0.2093</td>
<td>0.4065</td>
<td>0.6384</td>
</tr>
<tr>
<td>SDMM</td>
<td>THUIR-C-CO-NEW-4</td>
<td>100</td>
<td>0.2329</td>
<td>0.1728</td>
<td>0.3489</td>
<td>0.6011</td>
</tr>
</tbody>
</table>

Table 1: WWW-3 Chinese subtask official results of THUIR 1-5 runs

AdaRank learning-to-rank models. To generated these runs, we revived runs, including the LambdaMART, Coordinate Ascent, and AdaRank models. We adopted these revived ranking systems to generate the reranking results under WWW-3 topics, and concatenated the results with the ranking list of the original systems under WWW-2 topics. Our submitted runs are the concatenated versions.

3.4 BERT Models

BERT models are quite popular in the region of natural language processing. Many researchers also tried to apply the BERT models into their fields, such as sentiment analysis, question answering, sentence tagging, and so on. In document retrieval, we are glad to see this task is a little bit similar to the question answering task. We have the two "sentences": one is the query content, the other the document content, we need to use these two "sentences" to train a classification model. Naturally, we can apply the BERT models to help us solve this problem. Before the two sentences, we need to add a [CLS] token, the corresponding output of this token contains the classification information, we can just connect it directly to a classification layer. Between the sentence of the query and document, we need to add a [SEP] token, to represent that this is the divider of these two sentences. Our work is based on the bert-base-uncased pre-trained BERT model. The two sentences need to do token embedding to transform into the valid format, then we can feed the embedding vector into the BERT models, to fine-tune for a document reranking model.

3.5 About Revived Runs

In this round of WWW English subtask, we submitted three revived runs, including the LambdaMART, Coordinate Ascent, and AdaRank learning-to-rank models. To generated these runs, we kept the same process and parameters as those of the WWW-2 runs (THUIR-E-CO-MAN-Base-2, THUIR-E-CO-MAN-Base-3, THUIR-E-CO-MAN-Base-1, respectively). However, there exist some differences between the revived ranking system and the original one. First, we converted the Python2 code to Python3, and reorganised the code to make the project more readable and compact. Second, because of the loss of some important data (server stored with the original project has been crashed), we replaced the background corpus (used to calculate IDF, BM25, and some language models) with a new one.

3.6 Results

Table 2 shows the performance of our runs in the English subtask, including the mean metric values and the ranks among all 37 runs submitted in the English subtask. We can find that the learning-to-rank models perform better than BM25, as we expected. On the other hand, BERT’s performance did not meet our expectations, that might because the training data sets we used are not large enough (only 84834 query-document pairs extracted from the MQ2007 and MQ2008 data sets) to fine-tune for the BERT’s parameters. We adopted these revived ranking systems to generate the reranking results under WWW-3 topics, and concatenated the results with the ranking list of the original systems under WWW-2 topics. Our submitted runs are the concatenated versions.

4 CONCLUSION

In the NTCIR-15 WWW-3 task, we participated in both Chinese and English subtasks. We tried BERT models in both Chinese and English subtasks, we also revived some high performance runs in the WWW-2 task. In the future, we would like to investigate how to leverage the embedding of the BERT models into the learning-to-rank models, and how to better combine the human relevance labels with the implicit relevance feedback.

REFERENCES

