wfrnt Team at the NTCIR-15 QA Lab-PoliInfo-2 Task
Ken-ichi Yokote
velleykt@gmail.com

ABSTRACT
This paper investigates whether heuristics of conclusion extraction in Japanese is useful to develop a baseline system for summarization. We quantitatively verify the validity of examination of language use such as "English begins with conclusion, Japanese begins with background."

TEAM NAME
wfrnt

SUBTASKS
Dialog-summarization

1 INTRODUCTION
An existing research for summarization extracts the last sentence as a conclusion[3]. This approach is based on the observation that many Japanese texts first present backgrounds and then move on to conclusions. In this study, we apply several heuristics to Dialog-summarization Task[1], which aims at generating a summary of the transcript in the Tokyo Metropolitan Assembly, and conduct a comparison with other systems. We then examine the effectiveness of heuristics of conclusion extraction in Japanese as a baseline system of summarization.

2 SYSTEM OVERVIEW
Figure 1 shows an overview of our proposed system. The first step is to assign Utterance Segment ID to a range of contiguous sentences. The second step is to identify the sentences corresponding to the input data using Utterance Segment ID; this step is called Utterance-Level Segmentation. The last step is to extract the conclusion statement from the sentences; this step is called Extracting Conclusion Statement.

3 UTTERANCE-LEVEL SEGMENTATION
In this study we apply the "Person-Role Relation Detection" and the "Utterance Segment Detection" introduced by Yokote[2] to the assignment of the Utterance Segment IDs and the identification of sentences from the input data.

4 EXTRACTING CONCLUSION STATEMENT
Figure 2 shows the process of the extraction of conclusion statement. First, we pick up a sentence from the identified sentences backward. We then check whether it meets the ignore patterns; an example of ignore patterns is whether the sentence contains a particular word such as "Arigatou" (this pattern is motivated from the heuristics that "Arigatou" is likely to be part of greeting exchanged at the end of a conversation, being inappropriate as a conclusion). After finding a sentence that does not meet any ignore patterns, we use word tokenization to it and extract the last 50 words, which constitutes the conclusion statement. The length limitation of 50

5 CONCLUSIONS
In the comparison of ROUGE-1-R scores, our system took 13th and 15th places among 19 systems submitted to Formal Run[1]. It would be possible to improve the performance of our system by varying the length limitation and reexamining the ignore patterns. For more detailed error analysis, it is important to consider how appropriate the extracted statement is as not only a conclusion but also a summary this task aims at.

6 ACKNOWLEDGMENTS
The author would like to thank the organizers of QA Lab-PoliInfo-2 for helpful discussions. The author would also like to thank Koji Yokote for proofreading this paper.

REFERENCES
Algorithm 1 Extracting Conclusion Statement

Require: Sentences $S = \{S_1, S_2, \ldots, S_n\}$
Ensure: Conclusion Statement C

for $i \leftarrow n, \ldots, 3, 2, 1$ do
 if ‘登壇’ is IN S_i then
 continue
 else if ‘拍手’ is IN S_i then
 continue
 else if ‘ありがとう’ is IN S_i then
 continue
 else if ‘質問’ is IN S_i then
 continue
 else if ‘…………’ is IN S_i then
 continue
 end if
 words \leftarrow tokenize(S_i)
 $C \leftarrow$ words[−49 :]
 break
end for

Figure 2: Process of Extracting Conclusion Statement
