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ABSTRACT
The SRCB participated in subtask1: Few-resource Named Entity
Recognition (NER) and subtask3: Adverse Drug Event detection
(ADE) in NTCIR-16 Real-MedNLP. This paper reports our approach
to solve the problem and discusses the official results. For the Few-
resource NER subtask, we developed NER systems based on pre-
training model, span-based classification and prompt learning. In
addition, data augmentation andmodel ensemble are used to further
improve performance. For ADE subtask, we mainly adopted two
methods: multi-class classification and prompt learning. We em-
ployed a two-stage training strategy to solve the long tail distribu-
tion problem and applied transfer learning to improve performance
of model.
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1 INTRODUCTION
NTCIR-16 Real-MedNLP[1] is a shared task workshop for medical
language processing using actual medical documents (case reports
and radiology reports). The goal of this task is to promote the
development of practical systems that support various medical
services. In Real-MedNLP track this year, we are mainly involved
in the following subtasks: subtask1: Few-resource NER(Subtask1-
CR-EN,Subtask1-RR-EN) and subtask3: ADE(Subtask3-CR-EN).

The Few-resource NER subtask challenges participants to extract
important information from the real medical text. In particular, the
participants were asked to perform a recognition and classification
of 12 medical entity types and various fine-grained attributes. NER
is one of the most basic task in natural language processing, and
there have been many research progresses. The most mainstream
and effective method is fine-tuning based on pre-trained language
model (PLM) like BERT[2]. There are many NER methods, such

as sequence tagging model[3], pointer network[4] and span-based
model[5–7]. To explore the most suitable PLMs and NER methods
for subtask1, we first conduct experiments on different combina-
tions of PLMs and NER methods and improved the model based on
prompt learning.

Next, in order to further improve the performance of model,
we explored data augmentation methods and model integration
methods suitable for subtask1. Later, by comparing the Annotation
Guidelines[8] and model prediction results, we found that some
error prediction results did not conform to the guidelines, so we fur-
ther summarized some rules according to the guidelines to further
improve the performance of subtask1.

For ADE, the goal of this task is to extract adverse drug event
(ADE) information from case reports. This subtask is especially
designed for MedTxt-CR. Given an input report, the system extracts
the ADE information from the report. We considered the task a
multi-class classification problem to detect ADE certainty of each
given disease or medicine into one class among. Prompt learning
was also introduced because it has showed good performance in
small sample classification in recent study.

For multi-class classification, we try a two-stage training strategy
to solve the problem for long tail distribution data. Furthermore, we
create related tasks to improve performance of model by transfer
learning. For prompt learning, we design the patterns and verbalizer
for model. It is worth mentioning that using position information
of entity improves the performance of model. Finally, we explore
some data augmentation strategies for small sample problem.

2 RELATEDWORK
2.1 Span-based model
Span-based model is using span representations derived from a pre-
training model like BERT, word and character embeddings. These
representations are then shared across the downstream tasks.

2.2 Long-tailed Distribution
Long-tailed learning can be regarded as a more specific and chal-
lenging sub-task within class-imbalanced learning. In comparison,
in class-imbalanced learning, the number of classes can be very
small and the number of minority data is not necessarily small;
while in long-tailed learning, there are a large number of classes
and the tail-class samples are often very scarce.

The two simplest basic methods of long tailed distribution are
re-sampling and re-weighting. The essence of these methods is to
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use the known data set distribution to hack the data distribution
in the learning process, that is, reverse weighting, strengthen the
learning of tail classes and offset the long tail effect.

Re-sampling in earlier studies included under sampling of head
classes and over sampling of tail classes. The most commonly used
strategy is class-balanced sampling that each sample has the same
probability of being selected, regardless of its class. Kang et al. [9]
seek to seeks to train models from class-imbalanced samples.

Re-weighting [10, 11] is mainly reflected in the loss of classifica-
tion. Unlike re-sampling, because of the flexibility and convenience
of loss calculation, many complex tasks, such as object detection
and instance segmentation, prefer to use re-weighted loss to solve
the long-tailed distribution problem.

2.3 Prompt Learning
Prompt Learning refers to processing the input text information
according to a specific template, and reconstructing the task into
a form that can make full use of the pre-trained language model.
Prompt learning is currently a very effective method for few shot
classification. Transform the classification problem into a mask
language modeling problem[12].

3 METHODS
In this section, we detail our approach of subtask1 and subtask3 in
Section 3.1 and Section 3.2.

3.1 Subtask1
In this section, we consider NER as a language model span classifi-
cation problem. We first introduce the pre-trained language model
in Section 3.1.1, and then detail model structure in Section 3.1.2,
and last show model ensembles and data augmentation in Section
3.1.3 and Section 3.1.4, respectively.

3.1.1 Pretrained Language Models.
In this task, we tried 5 different PLMs: BERT, BioBERT[3], Clinical
BERT[13], Pubmed BERT[14], and Entity BERT[15]. Their model
structure is the same as BERT, the differences are that they were
pre-trained using different training data (biomedical or clinical
domain data) and adopt different mask strategies (entity-centric
masking strategy). See Table 1 for a summary of PLMs.

3.1.2 Span-based and Prompt NER Model.
Traditionally, various approaches for NER have been investigated
such as sequence tagging model, pointer network and span-based
model. We tried all these methods and improve the span-based
method by adding prompt learning[16].

Our span classifier takes an arbitrary candidate span as input.
We pre-define a set of entity categories. The span classifier maps the
span to a class, none represents spans that do not constitute entities.
Let’s introduce the span-based model with prompt learning.

For a input sentence X consisting of n tokens 𝑥1, 𝑥2, ..., 𝑥𝑛 . Let
𝑆 = 𝑠1, 𝑠2, ..., 𝑠𝑚 be all the possible spans in X of up to length L. We
first define a prompt template for each span 𝑠𝑖 , the template is "𝑠𝑖 is
a [MASK] entity". "[MASK]" is a mapping word of entity type. Then
Splice the prompt information constructed based on the template
to the back of the sentence. The model only needs to predict that
the word corresponding to [MASK] is the result we want.

We use a pre-trained language model to obtain contextualized
representations𝑥𝑡 for each input token𝑥𝑡 , suppose [CLS](representation
of overall sentence) is expressed as 𝑒𝑐𝑙𝑠 and [mask] is expressed as
𝑒𝑚𝑎𝑠𝑘 . Then use max-pooling to generate the pre-trained model
embeddings of span(𝑒𝑠𝑝𝑎𝑛) in sentence and span(𝑒

′
𝑠𝑝𝑎𝑛) in prompt

template.
Given the span width 𝑙 , we look-up a width embedding𝑤𝑙 from a

dedicated embeddingmatrix, which contains a fixed size embedding
for each span width 1, 2, ... [17]. These embeddings are learned by
back-propagation.

This yields the following span representation(whereas +○ de-
notes concatenation):

𝑒𝑠 = 𝐴𝑣𝑔𝑃𝑜𝑜𝑙𝑖𝑛𝑔(𝑒𝑠𝑝𝑎𝑛, 𝑒
′
𝑠𝑝𝑎𝑛) +○𝑤𝑙

Finally, we add the representation of "[CLS]" and "[MASK]". The
final input to the span classifier is:

𝑋𝑠 = 𝑒𝑠 +○𝑒𝑐𝑙𝑠 +○𝑒𝑚𝑎𝑠𝑘

This input is fed into a softmax classifier:

𝑦𝑠 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑊 𝑠 · 𝑋𝑠 + 𝑏𝑠 )
which yields a posterior for each entity class

3.1.3 Model Ensembles.
In the model parameter tuning stage, since there is only a training
set, we use k-fold cross-validation tomake full use of the data.When
the model parameter tuning tends to be stable, we select several
sets of better parameter combinations, use all the training sets to
train the data, and then select several lower models as candidate
ensemble models. Because of the different model structures we use,
the simplest result weighted average method is used for the final
integration.

3.1.4 Data Augmentation.
Data augmentation has been proved to be effective inmany domains
in artificial intelligence.

We first perform sentence linearization to convert labeled sen-
tences into linear sequences, so that language models can be used
to learn the distribution of words and tags in gold data.

Given a sentence, first feed the sequence of tokens into the
embedding layer to lookup the corresponding embeddings.

A dropout layer is applied to each token embedding to generate
new embeddings. Then feed embeddings into LSTM to produce
hidden state at each position. Another dropout layer is applied to
hidden states.

Finally, a linear and softmax layer is used to predict the next
token in the sequence. Through the above process, a new training
corpus is generated.

3.2 Subtask3
In this section, we mainly consider the methods fine-tuning on
the pre-trained language model, include multi-class classification
method and prompt learning based method. In addition, we also
used model ensembles and data augmentation.

3.2.1 Multi-class Classification.
This method mainly consists of three parts: transfer learning, two-
stage training.
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Table 1: PLMs summary

PLMs Pre-trained data Pre-trained from scratch? features
BERT Wikipedia and BookCorpus YES General-domain (out-domain)

BioBERT PubMed abstracts and
PubMed Central full text articles NO, based on BERT Mixed-domain

Clinical BERT MIMIC-III corpus NO, based on BERT and BioBERT Mixed-domain

Pubmed BERT PubMed abstracts and
PubMed Central full text articles YES In-domain

Entity BERT MIMIC-III corpus NO, based on Pubmed BERT In-domain
Entity-centric masking strategy

Transfer Learning The main goal of transfer learning is to
apply the knowledge or patterns learned in a certain field or task
to different but related fields or problems. Therefore, we mainly
create related but different tasks to make the model learn as much
knowledge as possible and transfer to this task.

For medicine and disease binary classification task, We train a
classification model to judge whether the text to be predicted is
disease or medicine.

The cloze test task is to judge whether the candidate is the cor-
rect answer to the masked position (original medicine or disease
position). Note that the candidate consists of one correct answer
and three wrong answer, the class of wrong answer is different
with correct answer. For example, the correct answer is a disease,
the three wrong answer is medicine from other case reports.
Two-stage Training In CV, BBN[18] uses Bilateral-Branch Net-
work to solve the problem caused by long-tailed distribution data.
Inspired by BBN, we proposed the two-stage training that the whole
training stage is divided into two parts. Note that the loss function
of first stage is ACSL loss[19], the training steps are 80% of total
training steps. The loss function of second stage is weighted cross-
entropy (WCE) loss, the training steps are 20% of total training
steps.

3.2.2 Prompt Learning.
Prompt Learning We first discuss pattern tilization training
(PET)[12] for text classification tasks, that is, for some text inputs,
𝑋 ∈ 𝑥 must be mapped from a finite set 𝑌 to a single output 𝑦. Let
𝑚 be a mask model (MLM) and 𝑡 be its tag set and𝑚𝑎𝑠𝑘 ∈ 𝑇 is the
masked mark. We represent the set of all marker sequences as 𝑇∗.
Pet requirements:

Pattern: 𝑃 (𝑥), which maps the original input to a problem con-
taining one mask token;

Verbalizer: 𝑉 (𝑦), which maps each output to a single token rep-
resenting its meaning.

Therefore, the original problem has also been transformed. The
probability of obtaining 𝑦 after giving 𝑋 has also become the prob-
ability that the mask model𝑀 predicts 𝑉 (𝑦) at the mask position
of 𝑃 (𝑥).

Patterns design examples:

* 1. text_b + "And it will " + self.mask + " bring the adverse
event." + text_a

* 2. text_a + text_b + "And it will " + self.mask + " bring the
adverse event."

* 3. "In this article, there is " + self.mask + "having the adverse
event"+ text_a + text_b

Verbalizer design : "0": ["not"]; "1": ["unlikely"]; "2": ["probably"];
"3": ["definitely"]

Position Information The position information refers to the
beginning, middle and end of a drug or disease in an article. Be-
cause of a case report, different positions also represent different
meanings, such as diagnosis or discussion. Therefore, adding this
kind of information is effective.

3.2.3 Data Augmentation.
We adopt two data augmantation strategies in this task. One is
the Back Translation, we translate data into Chinese and then into
English through Baidu translation API, so as to obtain more training
data.

The other is Feature Cutoff, we randomly erase some feature
dimensions in the embedding matrix, the embedding after cutting
is named augmented embedding. The main idea is to feed original
embedding and augmented embedding into shared encoder to get
the original logits and augmented logits, and then compute the KL-
Divergence between original logits and augmented logits. Finally,
we add KL-Divergence to the cross-entropy (CE) loss as the total
loss.

3.2.4 Model Ensembles.
In the model ensemble stage, we use 5-fold cross-validation to select
the optimal model, and then use the weighted average of the results
for model ensemble. In order to further improve the performance
of the model, we construct different 5-fold data to obtain the model
ensemble results, and another weighted ensemble is used to obtain
the finally result .We call this two-stage ensemble. Finally, we also
try to ensemble the model trained with all the data.

4 EXPERIMENTS
4.1 Subtask1
We use 5-fold cross-validation to make full use of the data. The per-
formance of our model with different technical points on Subtask1-
CR-EN training set are listed in Table 2, Table 3 and Table 4. The
performance is the evaluation results of 12 tags and attached at-
tributes. Table 2 shows the comparison of the sequence tagging
model on different pre-training models(PLMs). Table 3 shows the
fixed pre-training model(Pubmed BERT), the comparison of the re-
sults of different model structures, include sequence tagging model,
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Pointer network and span-based model with prompt learning(Span
+ PL). Table 4 shows the performance of model with prompt learn-
ing(PL) and data augmentation(DA) and model ensemble(ME). In
the results, we conclude that the span-based model with prompt
learning and augmentation and model ensemble show significant
improvement over our final system.

Table 2: Subtask1-CR-EN training set 5-fold cross-validation
average results on pre-training models

PMLs EntityF(CR) JointF(CR)
Clinical BERT 59.232 55.128

BioBERT 59.664 55.392
Entity BERT 60.296 55.902
Pubmed BERT 62.284 57.464

Table 3: Subtask1-CR-EN training set 5-fold cross-validation
average results on different model

Model EntityF(CR) JointF(CR)
Sequence tagging 62.284 57.464
Pointer network 63.176 58.946

Span + PL 64.698 59.712

Table 4: Subtask1-CR-EN training set 5-fold cross-validation
average results on different technical points

Model EntityF(CR) JointF(CR)
Span + PL(Base) 64.698 59.712

+DA 66.760 62.222
+ME 69.996 64.960

4.2 Subtask3
4.2.1 PLMs.
In this experiment, we use three PLMs as our baseline, Pubmed
BERT, Clinical BERT, BioBERT. In Table 5, we can observe that
Pubmed BERT has the best result in Subtask3-CR-EN training set
5-fold cross-validation average.

4.2.2 Multi-class Classification.
Table 6 shows the Subtask3-CR-EN training set 5-fold cross-validation
average results of multi-class classification with different technical
points. We can see that all technical points contribute to the per-
formance of the model to a certain extent, among which two-stage
learning and data augmentation greatly improve the performance
of model.

Table 5: The Subtask3-CR-EN training set 5-fold cross-
validation average results of PLMs

PLM Baseline F1
Pubmed BERT 34.2
Clinical BERT 33.2

BioBERT 32.0

Table 6: Subtask3-CR-EN training set 5-fold cross-validation
average results of multi-class classification

Multi-class Classificatiion 53.7
w/o data augmentation 52.5
& w/o cloze test task (Transfer Learning) 51.7
& replace ACSL with CE in two-stage training 50.6
& w/o two-stage training 47.1
& w/o binary classification task (Transfer Learning) 43.6

Table 7: Subtask3-CR-EN training set 5-fold cross-validation
average results of prompt learning

Prompt Learning 47.4
w/o data augmentation 43.0
& w/o position information 41.8
& w/o prompt learning 34.2

4.2.3 Prompt Learning.
Table 7 shows the Subtask3-CR-EN training set 5-fold cross-validation
average results of prompt learning. The prompt learning has the
highest improvement for all strategies. The data augmentation also
greatly improve the performance of the model. Note that it is useful
to add position information for prompt learning.

5 SUBMISSIONS
5.1 Subtask1
5.1.1 Subtask1-CR-EN.
For Subtask1-CR-EN test set, we submitted 5 runs for comparison
and analysis. Each run uses model ensembles and data augmenta-
tion, and the training set is expanded by about one time. Pre-training
models is Pubmed Bert. The difference is the model structure and
the number of label types.
Subtask1-CR-EN-1: Use span-based model with no prompt learn-
ing. 12 labels and attached attributes.
Subtask1-CR-EN-2: Use span-based model with prompt learning
and some manual summary rules. 8 labels and attached attributes.
Subtask1-CR-EN-3: Use span-based model with prompt learning.
8 labels and attached attributes.
Subtask1-CR-EN-4: Use sequence tagging model and pointer net-
workmodel and somemanual summary rules. 12 labels and attached
attributes.
Subtask1-CR-EN-5: Use sequence tagging model and pointer net-
work model and some manual summary rules. 8 labels and attached
attributes.
The performance of our model with different technical points on
the Subtask1-CR-EN test set for subtask1 are listed in Table 8.

5.1.2 Subtask1-RR-EN.
For Subtask1-RR-EN test set, we submitted 3 runs for comparison
and analysis. Each run uses model ensembles and data augmenta-
tion, and the training set is expanded by about one time. Pre-training
models is Pubmed Bert.
Subtask1-RR-EN-1: Use span-based model with prompt learning
and some manual summary rules.
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Table 8: Subtask1-CR-EN results for our submitted runs

Run EntityAcc EntityP EntityR EntityF JointAcc JointP JointR JointF
Subtask1-CR-EN-1 85.69 65.09 55.38 59.84 84.14 59.69 50.79 54.88
Subtask1-CR-EN-2 88.27 67.65 59.71 63.43 86.58 62.50 55.16 58.60
Subtask1-CR-EN-3 87.77 68.06 57.59 62.39 86.13 62.80 53.14 57.57
Subtask1-CR-EN-4 88.38 58.17 60.71 59.41 86.47 53.46 55.80 54.60
Subtask1-CR-EN-5 88.64 60.90 59.78 60.33 86.66 55.92 54.89 55.40

Table 9: Subtask1-RR-EN results for our submitted runs

Run EntityAcc EntityP EntityR EntityF JointAcc JointP JointR JointF
Subtask1-RR-EN-1 92.23 83.14 82.06 82.60 89.96 79.71 78.67 79.19
Subtask1-RR-EN-2 92.28 83.26 82.06 82.66 89.61 79.31 78.17 78.74
Subtask1-RR-EN-3 92.66 79.90 81.34 80.61 90.37 76.50 77.88 77.19

Table 10: Subtask3-CR-EN (ADE) results for our submitted runs

Method Entity Level (ADEval) Report Level0 1 2 3
Subtask3-CR-EN-1 (ADE) 97.25 7.69 - 61.54 57.14
Subtask3-CR-EN-2 (ADE) 97.25 0.00 - 63.41 57.14
Subtask3-CR-EN-3 (ADE) 97.18 0.00 - 61.54 52.63
Subtask3-CR-EN-4 (ADE) 97.02 0.00 - 60.00 57.14
Subtask3-CR-EN-5 (ADE) 97.60 0.00 - 66.67 42.86
Subtask3-CR-EN-6 (ADE) 97.11 9.09 - 54.05 47.06

Subtask1-RR-EN-2: Use span-based model with no prompt learn-
ing and some manual summary rules.
Subtask1-RR-EN-3: Use sequence tagging model and pointer net-
work model and some manual summary rules.
The performance of our model with different technical points on
the Subtask1-RR-EN test set for subtask1 are listed in Table 9.

5.2 Subtask3
5.2.1 Subtask3-CR-EN (ADE).
For Subtask3-CR-EN (ADE) test set, we submitted 6 runs for com-
parison and analysis. Each run uses model ensembles and data
augmentation, and the training set is expanded by about one time.
Pre-training models is Pubmed Bert.
Subtask3-CR-EN-1 (ADE): Use multi-class classification model
with two stage models (5 optimal models) and full data trained
model ensemble.
Subtask3-CR-EN-2 (ADE): Use multi-class classification model
with two stage models (6 optimal models) and full data trained
model ensemble.
Subtask3-CR-EN-3 (ADE): Use multi-class classification model
with only -fold cross-validation models and and full data trained
model ensemble.
Subtask3-CR-EN-4 (ADE): Use multi-class classification model
with two stage models (6 optimal models) and full data trained
model ensemble (different weights).
Subtask3-CR-EN-5 (ADE): Use prompt learning model with only
-fold cross-validation models and and full data trained model en-
semble.

Subtask3-CR-EN-6 (ADE): Use prompt learning model with only
-fold cross-validation models and and full data trained model en-
semble and some manual summary rules.
The performance of our model with different technical points on
the Subtask1-RR-EN test set for subtask3 are listed in Table 10.

6 CONCLUSIONS
In this paper, For Few-source NER, we propose a approaches which
rely on span-based method and prompt learning. We compared
previous model structures on different pre-training models. We
conclude that selecting the correct pre-training model and a model
structure more suitable for the task can achieve relatively good
performance. Data augmentation is generally more obvious in the
case of less training data. In addition, the combination results of
different methods are not necessarily positive, so in the final combi-
nation, it is necessary to fully combine and fully verify the influence
of different combinations, so as to obtain the optimal results.

For ADE, we mainly adopt two methods: multi-class classifi-
cation and prompt learning. For multi-class classification, we try
a two-stage training strategy to solve the long tail distribution
problem. Note that the performance of the model in adverse drug
reaction detection is greatly improved by creating related tasks. For
prompt learning, we design the patterns and verbalizer for model.
In addition, We also explore some data augmentation strategies in
this task. However, the test results is not good in tail classes. We
will be committed to solving the long tail distribution problem.
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