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ABSTRACT

In this paper, we present two systems from DCU named DCUMe-
mento and DCUVOX that earlier participated in the 2021 edition of
the Lifelog Search Challenge and were redeveloped to participate
in the NTCIR-16 Lifelog-4 task. Both systems use image-text em-
beddings from various CLIP models to build their search backend
with DCUVOX using the ViT-B/32 model while DCUMemento uses
a weighted ensemble of scores from ViT-L/14 and ResNet-50x64
models. The paper also discusses the query reformulation strategy
used by the systems in addition to the system architecture. Finally,
we present the results of our evaluation and discuss limitations
of both systems with details of improvements planned for future
iterations.
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1 INTRODUCTION

Lifelogs are longitudinal multimodal archives of continuous per-
sonal data recorded passively using wearable cameras and sensor
devices such as FitBit, sleep trackers, mood trackers. Lifelogging
as a concept is not new and was introduced by Bush [5] in the
1940s and later popularized by Gemmell and Bell [7]. However, the
recent fast-paced growth in storage and sensor technology in line
with Moore’s law has spurred significant interest from the research
community owing to potential use cases of lifelogging.
Information retrieval of lifelog data is a challenging problem,
given the data is multi-modal with information scattered between
images, textual metadata, and other sensor data. The egocentric
nature of the images further aggravates the problem as they are
at times occluded, blurry and repetitive. Solving specific use cases
such as augmenting human memory using lifelogs or using them
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for memory reminiscence therapy to aid people suffering from
neurodegenerative diseases like Alzheimer’s depends on how well
we can retrieve information from lifelogs. Hence this is an important
topic for the research community.

Several challenges such as NTCIR-Lifelog task [14], ImageCLE-
Flifelog [11] and Lifelog Search Challenge [9] [8] have been orga-
nized in recent few years aiming to advance the state of the art in
multimodal information retrieval.

The NTCIR-Lifelog task is a core task of the NTCIR-16 Con-
ference! which includes a single subtask i.e. the Lifelog Semantic
Access Task (LSAT) running both Automatic and Interactive modes
as discussed in Section 2 and in more detail in [14].

In this paper, we present two systems from DCU, DCUMemento
and DCUVOX, that participated in the NTCIR-16 Lifelog-4 Auto-
matic LSAT subtask. Both systems leveraged image-text embed-
dings from various CLIP [13] models to develop their respective
search and ranking functionality. DCUVOX’s backend was sup-
ported by the ViT-B/32 model from CLIP while DCUMemento used
a weighted ensemble of scores from ViT-L/14 and ResNet50x64
models to rank the images.

The rest of the paper is structured as follows: Section 2 discusses
the Lifelog Semantic Access Task in more detail while Section 3
briefly discusses the dataset associated with the task. Then, in Sec-
tion 4, we discuss the DCUMemento system in detail, covering the
core aspects of the system such as query reformulation, search
engine and evaluation results. Similarly, Section 5 discusses the
functionality of DCUVOX, covering the methodology and evalua-
tion results. Finally in Section 6, we conclude our paper and discuss
future work in the development of these systems.

2 LIFELOG SEMANTIC ACCESS TASK

The Lifelog Semantic Access Task (LSAT) is an item search task that
can be undertaken in an interactive or automatic manner, where the
participants are required to retrieve a number of specific moments
from the lifelogger’s life [14].

e Automatic LSAT: The automatic run is intended to operate
independently of any user involvement during the search
process beyond specification of the initial query which can
happen once for each topic at the start of the search. The

!http://research.nii.ac.jp/ntcir/ntcir-16/conference.html
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process is not time-bound and once finished should return a
ranked list of 100 images for each of the topic.

o Interactive LSAT: The interactive run allows user involve-
ment during the search process with single or multiple phases
of query reformulation or relevance feedback until the user
is satisfied with the results. While interactive running also
expects a ranked list of 100 images for each topic, automatic
running is time-bound allowing a maximum of 300 seconds
for each topic.

The subtask contains 48 topics out of which 24 are recall focused
requiring as many relevant items as possible to be present in the
top-100 images. For example, "Find examples of when I was in an
antiques store" asks to rank all moments when the person was in an
antiques store. On the other hand, the other 24 topics are precision
focused with only 1 or a small number of relevant items in the
collection e.g "Find examples of when I was having coffee in a cafe
with a friend on Saturday mornings" looking for a specific moment
from that person’s life.

3 DATASET

The NTCIR-16 Lifelog4 [14] task uses the same dataset from the
Lifelog Search Challenge 2021 [8] which consists of:

¢ Egocentric Images: The dataset consists of ~191k images
collected from a single lifelogger captured in 2015, 2016 and
2018, spanning 114 days using wearable cameras such as
OMG Autographer and Narrative Clip.

e Metadata: The metadata file consists of general user in-
formation like location, activity, elevation, etc. as well as
biometric information like calories burnt, heart rate, step
count, etc. captured using a wearable device.

e Visual Concepts: The visual concepts file contains scene
descriptions, object tags with their confidence scores, object
bounding boxes, etc., for each image in the dataset.

4 SYSTEM OVERVIEW - DCUMEMENTO

In this section, we present an overview of the system outlining the
search and ranking functionality as well as the query reformulation
aspects of the system.

4.1 DCUMemento Query Reformulation

We reformulated the queries from the NTCIR-16 Lifelog4 task
in an easy to process dictionary form to suit the needs of our
search engine. The search engine of DCUMemento which leverages
image-text embeddings generated from the CLIP [13] model accepts
queries in natural language. However, it can only process visual
concepts well and fails to comprehend details like time, date, day,
month, etc. To mitigate these shortcomings, we manually restruc-
tured queries to extract the visual concepts from metadata such as
date, time, etc. to allow us to perform a stage-wise search process.
At the initial stage, the search engine ranks the images based
solely on visual concepts. It subsequently searches for other spe-
cific pieces of information to apply relevant filters over the ranked
results and initiate a temporal search if required. For example, we
reformulated the query, "Find examples of when I was waiting at the
baggage carousel at an airport after a flight" to separate the visual
concepts and temporal information in the following manner:
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o Search query: waiting at the baggage carousel at an airport
e Temporal Information:

— Before: in an airplane

— After:

Similarly, we reformulated the query, "Find examples of when I
was having coffee in a cafe with a friend on Saturday mornings" to
separate the visual description from other specific details like day
and time,

e Search query: having coffee in a cafe with someone
o Filters:

— Day Name: Saturday

- Hour: <10

To apply filters easily, we borrowed the enhanced metadata from
[1] which has separate columns for day name, hour, and month.

4.2 DCUMemento Search Engine

The search engine of DCUMemento is powered by the CLIP [13]
Model from OpenAl and accessed via an API endpoint deployed
using the Flask Framework. The model has been trained in a con-
trastive manner on 400 million image-caption pairs gathered from
the internet. This type of large scale pre-training allows it to learn
generalized visual concepts which can later be used to solve multi-
ple computer vision downstream tasks such as object recognition,
scene recognition, optical character recognition, etc.

Our system, like [2], leverages image-text embeddings from two
recently released CLIP models, one using Vision Transformer [6]
backbone (ViT-L/14) while the other one using a ResNet-50 [10]
backbone (ResNet-50x64) to devise a weighted ensemble approach
to rank images. The methodology combines the scores from ViT-
L/14 and ResNet-50x64 in a 3:1 ratio to obtain a final score for
every image in the corpus which is then used to create the final
rankings. The rationale to combine the model scores in a 3:1 ratio
comes from the evaluation results presented in [2] which showed
significantly superior performance of the ensemble model over the
two individual models.

The search and ranking in done in stages with the following
execution steps:

e Search using Visual Description: Initially, the system tries
to rank the images based only on the visual information
available to it as described in Figure 1.

e Temporal Search: In the next stage, if the query has a
prompt for temporal events (past, future or both), a temporal
search is initiated based on the algorithm proposed by [2]
which then reranks the images accordingly.

o Apply Relevant Filters: Finally, the system applies all fil-
ters which are explicitly specified in the query text to gener-
ate a final list of top-100 images.

4.3 Evaluation Results of DCUMemento

TRECEVAL [12] was used to evaluate runs for the subtask (LSAT)
based on the comma separated files submitted by the participating
teams. Table 1 presents an overview of the evaluation results for
DCUMemento.

DCUMemento was successful in finding 1201 (40.1 %) relevant
images out of the total 2993 relevant images in the entire dataset.
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Figure 1: System Architecture of DCUMemento

Total number of topics 48
Total number of retrieved images 4800
Total number of relevant images in the corpus 2993
Total number of retrieved images which were relevant 1201
Mean Average Precision 0.3605
Geometric Mean Average Precision 0.1321
Binary Preference 0.6279
Mean Reciprocal Rank 0.7199

Table 1: DCUMemento - Overview of evaluation results

The mean reciprocal rank (MRR) of the system was 0.7199 which
means that on average, the system ranks the 1st relevant image
for any given topic either at the 1st or 2nd position while the
Mean Average Precision (MAP) was at 0.3605. MAP unlike MRR is
concerned with the ranks of all retrieved images instead of ranking
only the 1st relevant image, penalizing systems which rank relevant
images lower down the order.

We observe a sharp decline in our geometric mean average pre-
cision (GMAP) score when compared to MAP as GMAP tends to
heavily penalize low-performing topics even if they are few. We
suspect that our system might have fared poorly in a few recall-
focussed topics as if was not optimized to tackle those ultimately
pulling down our GMAP score. Figure 2 plots average precision at
specific recall values while Figure 3 shows precision of the system
at top-K retrieved results.
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Figure 3: Precision@K - DCUMemento

5 SYSTEM OVERVIEW - DCUVOX

This version of the DCUVOX system is based on the second it-
eration of Voxento [3] that participated in the 4th Lifelog Search
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Challenge held at ACM ICMR Conference 2021 where it was ranked
4th while competing against 17 other systems. Voxento 2.0 used the
backend retrieval API provided by [1] to perform search and rank-
ing of images leveraging image-text embeddings derived from the
CLIP [13] model besides providing functionalities such as enhanced
metadata and event segmentation.

In this DCUVOX implementation, we attempt to further enhance
and improve the metadata as well as the efficiency of our retrieval
functionality. This system focuses solely on the automatic task to
enable an investigation into how well the CLIP model performs in
this setting.

Both DCUVOX and DCUMemento systems include a relatively
similar backend in NTCIR-16 with differences in the CLIP model
versions to generate image-text features and also in metadata size.
A further difference is in the search algorithm implemented in
DCUMemento to rank images. Hence, we briefly explain the efforts
made in DCUVOX without delving too deeply in details of the
backend and the search engine, as both are explained in Section
4 and [1]. Moreover, both system performed query reformulation
with a different application of filters.

The first goal was to enhance the metadata as it plays a crucial
role in retrieving results accurately and efficiently. The first step was
to reduce the number of images as much as possible. The backend
API from [1] has enhanced metadata such as the identification of
blurred images. The number of blurred images was approximately
40k. We decided to exclude these from the dataset but then, after
some testing, we found that some of the blurred images were rel-
evant to certain queries and were thus, not excluded. Indeed, this
investigation led to an enhancement in the metadata preparation
task in the third version of Voxento [4].

5.1 DCUVOX Query Reformulation

Based on our experience with the Lifelog Search Challenge partici-
pation, as experts users, we reformulated the queries from under-
standing the NTCIR-16 Lifelog4 task’s queries in a form that most
suits the need of the search engine. The search engine employs the
CLIP [13] model that is based on text-image features, and aims to
interpret queries expressed in natural language. However, based
on multiple testing, we found that summarised queries show better
results than detailed queries in similar context. For example, we
reformulated this query “Find examples of when I had keys in my
hand and was about to either open or close my front door” to ‘T had
keys in my hand and was open or close my front door”. Although at
times shortened or summarised queries can have some grammatical
mistakes, the results can still be relevant because the system ap-
pears to overcome the lack of grammar. The provided list of queries
for the LSAT task provides a high-level description of the event as
well a detailed narrative explaining the situation. However, these
topics are not direct queries, which gives us the opportunity to
reformulate them to work better with the search engine. It is men-
tioned in Section 4.1 that the CLIP model [13] is good at finding
similarities between text and images using only visual concepts
while unable to properly identify specific information such as date
and place. We hence devised a strategy to exclude the filter words
from our initial query and use them to apply relevant filters, such
as city name, date, day name and time, during the search process.
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5.2 DCUVOX Search Engine

In brief, we derived the image features using the newly released
package of the CLIP model [13] as of January 2021. Comparing
the recent release with the older one from last year which our
system Voxento [3] also used when participating in the LSC 2021,
we found the results to be marginally better with the newer release
of CLIP. We believe that the difference in package version of libraries
like PyTorch or difference in CUDA runtime can impact results.
For example with some queries, we observed that relevant images
ranked higher when using the newer version. However, it can
not be legitimately stated that the newer version will impact all
queries in the same manner. Thus, we retained the older CLIP
model unlike DCUMemento which used ViT-L/14 and ResNet-50x64
models, whereas we used ViT-B/32 for our current system. It is
worth noting that the model ViT-B/32 was also employed in Voxento
2.0 [3] in LSC 2021. An explanation of the workings of the search
engine can be referred to in the section 4.2.

The search task was carried out as follows: we initially do query
reformulation followed by search based on the visual description
leveraging the text-image from the CLIP model. Next, appropriate
filters such as place name, date, and time, are applied to the result
set. Some frontend features such as image search using event seg-
mentation as well as temporal search are not used for this version
of the system. Instead, we will develop these features in interactive
runs in the near future.

5.3 Evaluation Results of DCUVOX

The NTCIR organizers employ the TREC evaluation [12] to generate
result scores for each run. Relevance judgements for the queries
are generated using a pooled approach for up to a maximum of 100
images per topic, per run, and per participant. Table 2 shows an
overview of the evaluation results for DCUVOX.

Total number of topics 48
Total number of retrieved images 4800
Total number of relevant images in the corpus 2993
Total number of retrieved images which were relevant 644
Mean Average Precision 0.1267
Geometric Mean Average Precision 0.0050
Binary Preference 0.2941
Mean Reciprocal Rank 0.3544

Table 2: DCUVOX - Overview of the evaluation results

As shown Table 2, the system, DCUVOX, was able to find 644
relevant images out of a total 2993 relevant images in the dataset
which represents a precision of (21.5 %). Regarding the ranking of
relevant images at first place for any topic, the system has a Mean
Reciprocal Rank (MRR) of 0.3544. The Mean Average Precision
(MAP) was at 0.1267 which indicates the average ranking of all
relevant images listed in order in the results set. For the geometric
mean average precision (GMAP), it has a low score which means
that a set of topics did not perform well. The reasons for this may
be the due to the absence of some features or the system being
unable to solve those tasks in the entirety. Figure 4 illustrates the
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average interpolated precision at specific recall values while Figure
5 shows precision of the system for the top-k retrieved results.

6 CONCLUSION AND FUTURE WORK

In this paper, we described the DCUMemento and DCUVOX sys-
tems which earlier participated in the 2021 edition of the Lifelog
Search Challenge [8], both re-developed to participate in the NTCIR-
16 Lifelog-4 task in an automated manner. With effective query
reformulation and ranking functionality, both DCUMemento and
DCUVOX showed competitive performance retrieving about 40%
and 22% relevant images respectively despite no human interven-
tion during the run. This shows the robustness of the zero-shot
CLIP models when applied to challenging out of domain datasets
like Lifelogs.

Neither systems was optimized to solve recall-focused topics
which expects only 1 or a few images as output from the system.
Currently, the systems output 100 images (maximum allowed) for
every topic which leads to poor evaluation scores on metrics like
GMAP. Our current research is focused on efficient handling of
both precision-focused and recall-focused queries. Furthermore, for
DCUVOX it is planned to use larger models from CLIP and compare
their performance with the DCUMemento system.
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