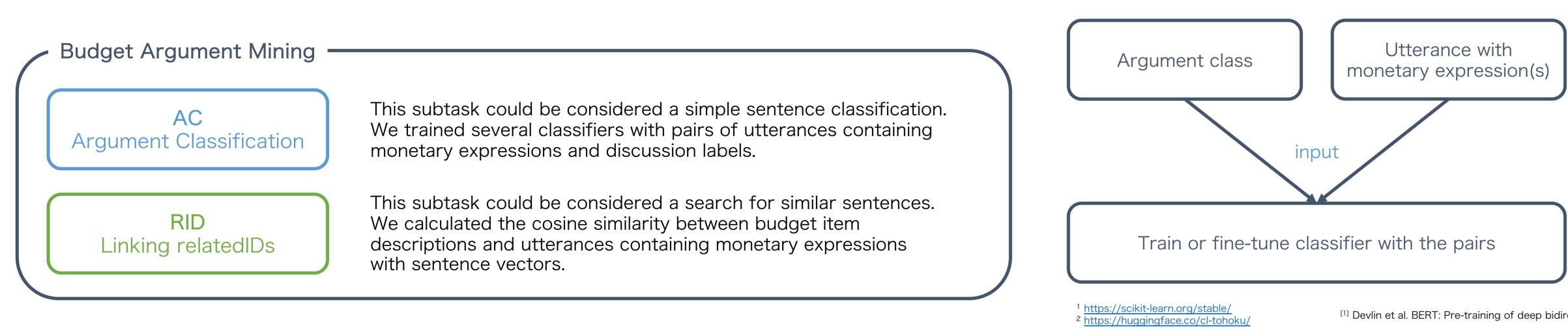


1. Our methods

The Budget Argument Mining task consists of two subtasks, including Argument Classification (AC) and linking relatedIDs (RID). We separately proposed several methods to perform AC or RID, and combined them.



2. Our results

Overall (AC + RID) score

• Among our methods, ID300 obtained the highest score (3rd place on the leaderboard).

AC score

- The BERT_base classifier obtained the highest score (2nd place on the leaderboard).
- BERT classifiers showed higher scores than rule-based and BoW-based ones.

RID score

- The TFIDF_modeA model obtained the highest score (1st place on the leaderboard).
- TF-IDF models showed higher scores than SBERT ones.
- TF-IDF models with shorter word segmentation performed better.

RID
0.6596
0.6596
0.6596
0.6596
0.6596
0.6596
0.6596
0.5745
0.6596
0.6596
0.5532
0.6596
0.1702
0.2128
0.1702
0.1702
0.1702
0.1702
0.1489
0.1277
0.0000

4. Conclusion

- We separately proposed several methods to perform AC or RID, and combined them. • Among our methods, the combination of BERT_base classifier and TF-IDF_modeA model obtaind the highest score (0.4468).
- This method got 3rd place on the leaderboard of overall score (0.5712).
- BERT_base classifier got 2nd place on the leaderboard of AC score (0.6596).
- TF-IDF_modeA got 1st place on the leaderboard of RID score.
- Because only one utterance sentence was used as input for our systems in this work, it is necessary to develop a system that could consider the surrounding context in the future.

OUC at the NTCIR-16 QA Lab-PoliInfo-3 Budget Argument Mining

<u>Keiyu Nagafuchi¹, Rin Sasaki², Seiya Oki², Yasutomo Kimura² and Kenji Araki³</u>

¹ Graduate School of Information Science and Technology, Hokkaido University, Japan ² Otaru University, Japan ³ Faculty of Information Science and Technology, Hokkaido University, Japan ³ Faculty of Information Science and Technology, Hokkaido University, Japan ³ Faculty of Information Science and Technology, Hokkaido University, Japan ³ Faculty of Information Science and Technology, Hokkaido University, Japan ³ Faculty of Information Science and Technology, Hokkaido University, Japan ³ Faculty of Information Science and Technology, Hokkaido University, Japan ³ Faculty of Information Science and Technology, Hokkaido University, Japan ³ Faculty of Information Science and Technology, Hokkaido University, Japan ³ Faculty of Information Science and Technology, Hokkaido University, Japan ³ Faculty of Information Science and Technology, Hokkaido University, Japan ³ Faculty of Information Science and Technology, Hokkaido University, Japan ³ Faculty of Information Science and Technology, Hokkaido University, Japan ³ Faculty of Information Science and Technology, Hokkaido University, Japan ³ Faculty of Information Science and Technology, Hokkaido University, Japan ³ Faculty of Information Science and Technology, Hokkaido University, Japan ³ Faculty of Information Science and Technology, Hokkaido University, Japan ³ Faculty of Information Science and Technology, Hokkaido University, Japan ³ Faculty of Information Science and Technology, Hokkaido University, Japan ³ Faculty of Information Science and Technology, Hokkaido University, Japan ³ Faculty of Information Science and Technology, Hokkaido University, Japan ³ Faculty of Information Science and Technology, Hokkaido University, Japan ³ Faculty of Information Science and Isobeta Information Science and

1.1. Our methods: AC

Rule-based classifier

If a specific keyword is included in a sentence

a corresponding argument class is decided.

3.1 Discussion: AC

- BERT classifiers obtained higher scores than rule-based and BoW-based ones. \rightarrow Considering context was effective for this subtask.
- We counted the number of misclassifications for all our methods.
 - → Training and fine-tuning did not go well because datasets of this task were imbalanced.

Argument class	Number of misclassifications for all our methods	Number of classes in GS data	Misclassification rate
Premise : Past and Decisions	26	101	0.2574
Premise : Current and Future / Estimates	0	196	0.0000
Premise : Other	19	145	0.1310
Claim : Opinions, suggestions, and questions	25	42	0.5952
Claim : Other	4	4	1.0000
It is not a monetary expression	23	30	0.7667
Other	2	2	1.0000

1.2. Our methods: RID

BoW-based classifier

- Calculated sentence vectors with Bag of Words or TF-IDF.
- Trained with scikit-learn¹'s algorithms.

Method name	Vectorizer	Tokenizer	Classifier
BoW_LSVC	BoW	MeCab IPADIC	LinearSVC
BoW_noun_LSVC	BoW(noun)	MeCab IPADIC	LinearSVC
TFIDF_LSVC	TF-IDF	MeCab IPADIC	LinearSVC
TFIDF_Sudachi_LSVC	TF-IDF	Sudachi Mode B	LinearSVC
BoW_SVC	BoW	MeCab IPADIC	SVC
BoW_RF	BoW	MeCab IPADIC	RandomForest
BoW_SGD	BoW	MeCab IPADIC	SGD
BoW_Ensenble	BoW	MeCab IPADIC	Ensenble

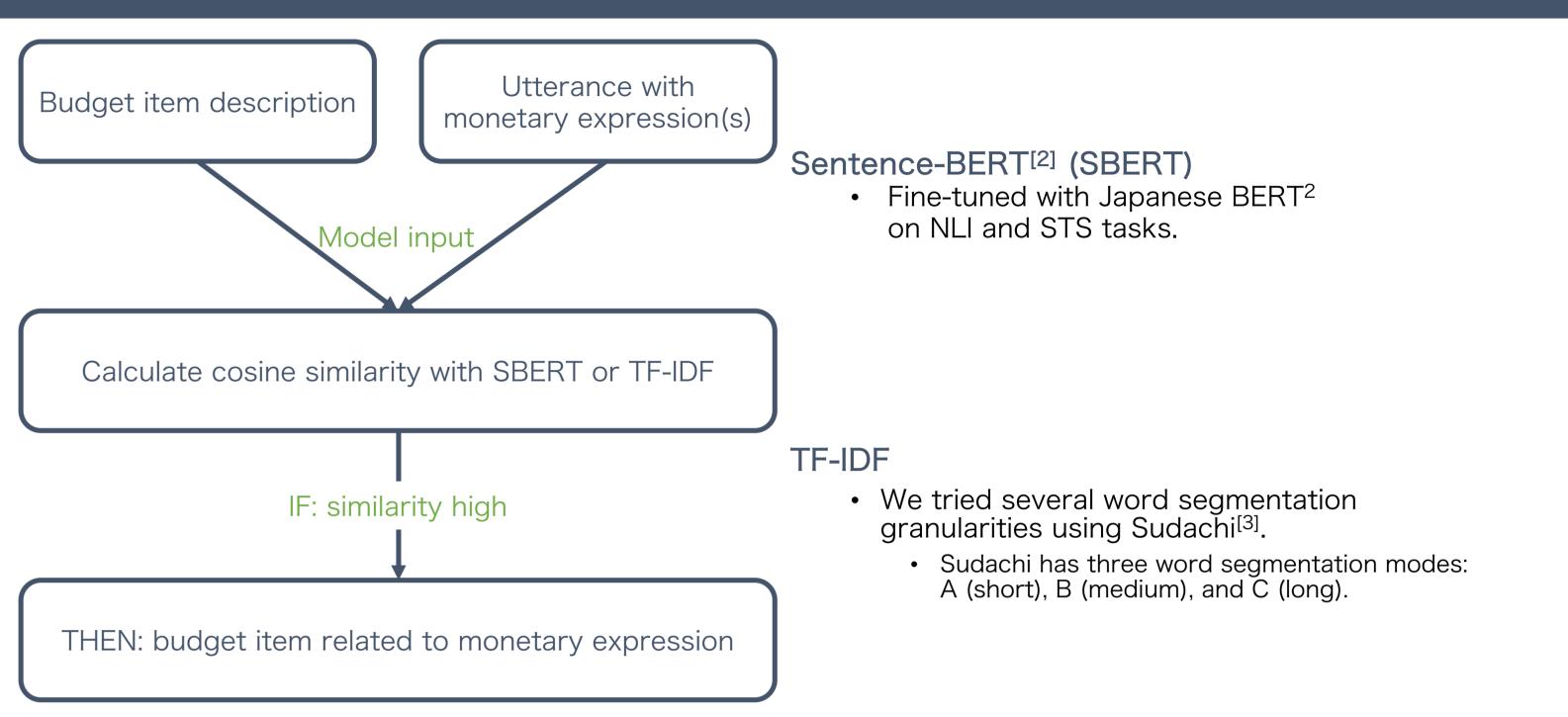
BERT^[1] classifier

• Fine-tuned with Japanese BERT² on argument classification.

Method name	Base model	
BERT_base	bert-base-japanese-whole-word-masking	
BERT_base_v2	bert-base-japanese-v2	
BERT_large	bert-large-japanese	
BERT_base_ml64	bert-base-japanese-whole-word-masking	

^[1] Devlin et al. BERT: Pre-training of deep bidirectional transformers for language understanding. NAACL 2019.

• Misclassification rates of "Premise" classes were low, but the rates of other classes were high.



² <u>https://huggingface.co/cl-tohoku/</u>

3.2 Discussion: RID

- were often omitted in the remarks.
- of monetary expressions.

	Overall score	AC score	RID score
1st	0.5106 (JRIRD)	0.5827 (JRIRD)	<u>0.6596 (OUC)</u>
2nd	0.4894 (JRIRD)	<u>0.5712 (OUC)</u>	0.6170 (JRIRD)
3rd	<u>0.4468 (OUC)</u>	0.5692 (fuys)	0.5745 (OUC)

^[2] Reimers et al. Sentence-BERT: Sentence embeddings using Siamese BERT-networks. EMNLP 2019. ^[3] Takaoka et al. Sudachi: a Japanese Tokenizer for Business, LREC 2018

• It is likely that poor results of SBERT were attributed to the fact that budget item descriptions

• Most utterances contained keywords related to budget items in preceding and following contexts

 \rightarrow It is likely that the TF-IDF obtained good results in linking RID.

• Utterances that were answered incorrectly with TF-IDF did not contained keywords.

 \rightarrow Keywords were included in the preceding and following sentences.

• In the future, we should consider a system that also considers the surrounding sentences.

Utterance	Related budget item
<mark>調整助成金</mark> の一万五千円への上限引上げや 合付金、学生支援給付金の創設などは、 はあるものの、賛成できるものです。	<mark>雇用調整助成金</mark> の抜本的拡充
example, raising the ceiling on It adjustment subsidy to 15,000 yen stablishing rent support benefits Int support benefits are all agreeable, bugh there are some problems.	Fundamental expansion of employment adjustment subsidy