OUC at the NTCIR-16 QA Lab-PoliInfo-3 Budget Argument Mining

OUC team

Keiyu Nagafuchi¹, Rin Sasaki², Seiya Oki², Yasutomo Kimura² and Kenji Araki³

¹ Graduate School of Information Science and Technology, Hokkaido University, Japan

² Otaru University of Commerce, Japan

³ Faculty of Information Science and Technology, Hokkaido University, Japan

The Budget Argument Mining task consists of two subtasks, including Argument Classification (AC) and linking relatedIDs (RID).

We separately proposed several methods to perform AC or RID, and combined them.

1.1. Our methods: AC

Rule-based classifier

Argument class

• If a specific keyword is included in a sentence, a corresponding argument class is selected.

Utterance with

monetary expression(s)

BoW-based classifier

- Calculated sentence vectors with Bag of Words or TF-IDF.
- Trained with scikit-learn¹'s algorithms.

Method name	Vectorizer	Tokenizer Classifier		
BoW_LSVC	BoW	MeCab IPADIC	LinearSVC	
BoW_noun_LSVC	BoW(noun)	MeCab IPADIC	LinearSVC	
TFIDF_LSVC	TF-IDF	MeCab IPADIC	LinearSVC	
TFIDF_Sudachi_LSVC	TF-IDF	Sudachi Mode B	LinearSVC	
BoW_SVC	BoW	MeCab IPADIC	SVC	
BoW_RF	BoW	MeCab IPADIC	RandomForest	
BoW_SGD	BoW	MeCab IPADIC	SGD	
BoW_Ensenble	BoW	MeCab IPADIC	Ensenble	

BERT^[1] classifier

• Fine-tuned with Japanese BERT² on argument classification.

Method name	Base model	
BERT_base	bert-base-japanese-whole-word-masking	
BERT_base_v2	bert-base-japanese-v2	
BERT_large	bert-large-japanese	
BERT_base_ml64	bert-base-japanese-whole-word-masking	

Train or fine-tune classifier with the pairs

input

² https://huggingface.co/cl-tohoku/

1.2. Our methods: RID

^[2] Reimers et al. Sentence-BERT: Sentence embeddings using Siamese BERT-networks. EMNLP 2019.
 ^[3] Takaoka et al. Sudachi: a Japanese Tokenizer for Business. LREC 2018

2. Our results

Overall (AC + RID) score

 Among our methods, ID300 obtained the highest score (3rd place on the leaderboard).

AC score

- The BERT_base classifier obtained the highest score (2nd place on the leaderboard).
- BERT classifiers showed higher scores than rule-based and BoW-based ones.

RID score

- The TFIDF_modeA model obtained the highest score (1st place on the leaderboard).
- TF-IDF models showed higher scores than SBERT ones.
- TF-IDF models with shorter word segmentation performed better.

ID	Method name (AC+RID)	Score	AC	RID
300	BERT_base + TFIDF_modeA	0.4468	0.5712	0.6596
309	BERT_base_ml64 + TFIDF_modeA	0.4255	0.5385	0.6596
263	BoW_SVC + TFIDF_modeA	0.4255	0.4827	0.6596
308	BERT_large + TFIDF_modeA	0.4043	0.5615	0.6596
305	BERT_base_v2 + TFIDF_modeA	0.4043	0.5577	0.6596
251	BoW_LSVC + TFIDF_modeA	0.4043	0.4904	0.6596
252	TFIDF_Sudachi_LSVC + TFIDF_modeA	0.4043	0.4885	0.6596
250	BoW_LSVC + TFIDF_modeB	0.4043	0.4904	0.5745
301	BoW_Ensenble + TFIDF_modeA	0.3830	0.4750	0.6596
277	BoW_RF + TFIDF_modeA	0.3830	0.4231	0.6596
248	BoW_LSVC + TFIDF_modeC	0.3830	0.4904	0.5532
278	BoW_SGD + TFIDF_modeA	0.2979	0.4615	0.6596
230	BoW_LSVC + SBERT_NLI	0.1489	0.4904	0.1702
177	Rulebased + SBERT_NLI (dry run ver.)	0.1277	0.3731	0.2128
234	TFIDF_LSVC + SBERT_NLI	0.0851	0.4750	0.1702
233	BoW_noun_LSVC + SBERT_NLI	0.0851	0.4231	0.1702
219	Rulebased + SBERT_NLI	0.0851	0.3731	0.1702
211	Rulebased + SBERT_NLI	0.0851	0.3731	0.1702
212	Rulebased + SBERT_STS	0.0851	0.3731	0.1489
183	Rulebased + Doc2Vec	0.0000	0.3731	0.1277
217	Rulebased + miss	0.0000	0.3731	0.0000

3.1 Discussion: AC

- BERT classifiers obtained higher scores than rule-based and BoW-based ones.
 - \rightarrow Considering contexts was effective for this subtask.
- We counted the number of misclassifications for all our methods.
 - Misclassification rates of "Premise" classes were low, but the rates of other classes were high.
 - \rightarrow Training and fine-tuning did not go well because datasets of this task were imbalanced.

Argument class	Number of misclassifications for all our methods	Number of classes in GS data	Misclassification rate
Premise : Past and Decisions	26	101	0.2574
Premise : Current and Future / Estimates	0	196	0.0000
Premise : Other	19	145	0.1310
Claim : Opinions, suggestions, and questions	25	42	0.5952
Claim : Other	4	4	1.0000
It is not a monetary expression	23	30	0.7667
Other	2	2	1.0000

3.2 Discussion: RID

- It is likely that poor results of SBERT were attributed to the fact that budget item descriptions were often omitted in utterances containing monetary expressions.
- Most utterances contained keywords related to budget items in preceding and following contexts
 of monetary expressions.
 - \rightarrow It might lead to that the TF-IDF obtained good results in linking RID.
- Utterances that were answered incorrectly with TF-IDF did not contained keywords.

 \rightarrow Keywords were included in the preceding and following sentences.

• In the future, we should consider a system that also considers the surrounding sentences.

Utterance	Related budget item	
例えば、 <mark>雇用調整助成金</mark> の一万五千円への上限引上げや 家賃支援給付金、学生支援給付金の創設などは、 問題点はあるものの、賛成できるものです。	<mark>雇用調整助成金</mark> の抜本的拡充	
For example, raising the ceiling on employment adjustment subsidy to 15,000 yen and establishing rent support benefits and student support benefits are all agreeable, although there are some problems.	Fundamental expansion of employment adjustment subsidy	

- We separately proposed several methods to perform AC or RID and combined them.
- Among our methods, the combination of BERT_base classifier and TF-IDF_modeA model obtaind the highest score (0.4468).
 - This method got 3rd place on the leaderboard of overall score (0.5712).
 - BERT_base classifier got 2nd place on the leaderboard of AC score (0.6596).
 - TF-IDF_modeA got 1st place on the leaderboard of RID score.
- Because only one utterance sentence was used as input for our systems in this work, it is necessary to develop a system that could consider the surrounding context in the future.