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ABSTRACT
In this paper, we discuss our contribution to the NII Testbeds and
Community for Information Access Research (NTCIR) - 16 Real-
MedNLP shared task. Our team (ZuKyo) participated in the Eng-
lish subtask: Few-resource Named Entity Recognition. The main
challenge in this low-resource task was a low number of training
documents annotated with a high number of tags and attributes.
For our submissions, we used different general and domain-specific
transfer learning approaches in combination with multiple data
augmentation methods. In addition, we experimented with models
enriched with biomedical concepts encoded as token-based input
features.
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1 INTRODUCTION
A significant part of physicians’ working time is spent on document-
ing patient treatment, time that is lost for diagnostics and direct
patient care. Therefore, the automatic processing of patient data has
enormous potential to support physicians in their daily work. The
automatic identification of diseases, anatomical characteristics, and
medications is also required to conduct extensive statistical analysis
of the course of a disease. The foundation of automatic document
analysis is named entity recognition (NER). However, one of the
biggest problems is obtaining large high quality labeled datasets,
since expert annotations are very expensive. Therefore, a special
interest exists in models that can produce a very accurate automatic
recognition based on a small number of annotated samples.

The Real-MedNLP subtask 1 addresses the few resource problem
for NER. The challenge is that the corpus consists of real clinical
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Figure 1: Extra tag variation of the BERT model. In addition
to the tokens, an extra tag can be entered. The embedding
vector representation of each input token is then obtained
by concatenating the embeddings of the token and the extra
tag.

reports with a sample size of only up to 100 documents for training
the model. This machine learning task is usually described as "few-
resource machine learning".

Our team (ZuKyo) participated in the sub-task 1 " Few-resource
Named Entity Recognition" of the NTCIR-16 Real-MedNLP task
[11].

2 RELATEDWORK
In recent years, substantial research has been done on improving
natural language tasks through data augmentation. There are sev-
eral methods of data augmentation that are more sophisticated than
simply adding noise to the training data. Ding et al. [4] showed a
generative approach to generate novel NER data by first learning a
model on sentences that were combined with their NER tags, and
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Table 1: The number of medical records provided for subtask
1, divided into training, validation, and test datasets.

Dataset MED-CR MED-RR Total

Train 88 62 150
Valid 22 10 32
Test 100 63 163

then using this model to create novel examples. In addition, it has
been demonstrated that using training data from different domains
can improve the robustness of the generated augmented data [2].
Kang et al. [8] were able to show that finding and replacing ULMS
concepts with synonyms to create augmented data can improve
performance on biomedical NER tasks.

One difficulty with tasks in the biomedical domain is that we
have a technical language that uses a variety of different, strictly
defined concepts that greatly expand the models’ vocabulary. A
common practice for dealing with this large terminological space is
to use trained NER systems to add additional tags that map words
to domain-specific concepts. These tags can be concatenated with
the input strings or passed to the combined model’s output layer
with the vector representation of the additional information to an
additional classification layer. Recently, it has been shown that
we can improve the performance of transformer-based models by
incorporating information from biomedical ontologies [5].

3 DATASET
The data provided by the organizers include radiological and case
reports in English and Japanese. Since we used different approaches
for English and Japanese, this paper only discusses methods based
on English language data sets, and a separate paper describes the
methods used for the Japanese data set.

The English radiology dataset (MedText-RR-EN) contains 15
different cases created by a total of 9 different radiologists. Each
report contains the description of findings based on a single radi-
ological image. The dataset is divided into 72 training documents
and 63 test documents. The following entities were annotated in
MedText-RR-EN:

• Diseases and symptoms (tag: d)
• Anatomical entities (tag: a )
• Time expressions (tag: timex3)
• Common names of clinical tests such as ’CT scan’ (Tag: t-test)

The English case report dataset (MedText-CR-EN) contains a
detailed description of a patient and their disease, as well as the
temporal progression of the treatment. The reports come from dif-
ferent medical societies, influencing the type of description and the
focus of the diseases treated. The dataset is divided into 100 training
documents and 100 test documents. The MedText-CR-EN includes
the same entities as the MedText-RR-EN, plus the following:

• Test entry (tag: t-key)
• Measured value of the test entry (tag: t-val)
• Medication names (tag: m-key)
• Medicine dosage (tag: m-val)

Table 2: A list of all extra tags, their meaning, source and
the model that generates them.

Extra Tags Meaning Model Source

A Anatomy OGER UBERON
D Diseases OGER CTD
M Drugs OGER RxNorm
CARDINAL Other numerals SpaCY Learned
DATE Dates or periods. SpaCY Learned
ORDINAL “first”, “second”, etc. SpaCY Learned
ORG Companies, agencies, institutions SpaCY Learned
PERCENT Percentage SpaCY Learned
QUANTITY Measurements SpaCY Learned
TIME Times smaller than a day. SpaCY Learned

3.1 Preprocessing
First, we decompose the XML articles into their individual sentences
and convert the XML tag-based annotation into an IOB-2 format.
This makes the data accessible to token classification methods.
Only the tags specified in paragraph 3 are considered, all other tags
contained in the original dataset are ignored.

This means that the example sentence given in XML:
"No <d certainty="negative">pathological lymphadenopathy
</d> is seen in the <a>mediastinum, hilar, or axilla</a>."
is converted to a sentence in IOB-2 format as follows:
"No[O] pathological[B-D] lymphadenopathy[I-D] is[O] seen[O]
in[O] the[O] mediastinum[B-A] hilar[I-A] or[I-A] axilla[I-A]
.[O]"
here the IOB-2 tags are specified in the subscript. Thus, given n the
number of official tags, the number of IOB-2 formatted tags is 2n+1.

From the training reports we separated reports for the valida-
tion, such that the validation reports contained ∼15% of the total
sentences from the original training set. The overall distribution of
the training, validation and test data can be seen in Table 1.

3.2 Augmentation
To enlarge the training dataset we used augmentation based on the
exchange of tags within the set of tags of the same type. First, for
each tag type 𝑖 , we created a set𝑇 𝑖 containing all phrases 𝑡𝑖 from the
training dataset that are tagged with the respective tag type. Given a
sentence 𝑠 with 𝑠 = {𝑤1, ...,𝑤𝑚−1, 𝑡𝑖𝑚, 𝑡𝑖

𝑚+1, ..., 𝑡
𝑖
𝑚+𝑘 ,𝑤𝑚+𝑘+1, ...,𝑤𝑛},

where 𝑤 is a token and 𝑡𝑖 a token tagged of type 𝑖 . To obtain an
augmented sentence 𝑠 ′ of 𝑠 we randomly draw a tagged phrase
𝑡𝑖 ′ of type 𝑖 with 𝑡𝑖 ′ ≠ 𝑡𝑖 and replacing 𝑡𝑖 with 𝑡𝑖 ′ such that
𝑠 ′ = {𝑤1, ...,𝑤𝑚 − 1, 𝑡𝑖 ′𝑚, 𝑡𝑖 ′

𝑚+1, ..., 𝑡
𝑖 ′
𝑚+𝑙 ,𝑤𝑚+𝑙+1, ...,𝑤𝑛}. Here, the

length 𝑘 of the original tagged phrase may differ from the length 𝑙
of the randomly selected tagged phrase.

We experimented with different sized augmented datasets and
used a training dataset with 10 augmented sentences for each sen-
tence (x10) and onewith 100 augmented sentences for each sentence
(x100) in the final runs.

4 METHODS
In the following section, we present the methods used in NER and
attribute identification task.
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4.1 Bio and Clinical BERT
Both the MedText-RR-EN and the MedText-CR-EN datasets contain
documents with many terms from the biomedical domain. Hence,
domain-adapted models are likely to have an advantage. To this end,
we use a Bio+ClinicalBERT model [1], initialized from BioBERT [9]
and further trained on all notes from MIMIC III [7], a dataset with
real-world electronic health records. BioBERT is a variation of the
BERT model [3], whose training objective is to predict a randomly
masked token based on its context and to predict the next sentence
based on the previous sentence. The BioBERT model is initialized
on the BERT model and trained on PubMed abstracts (PubMed)
and PubMed central whole articles (PMC). Through the BioBERT
and the Bio+ClinicalBERT, we obtain embeddings specific to the
biological, medical, and clinical domains.

4.2 Extra Tags
For the BERT based models, we have a variant of the BERT model
that allows us to add an extra tag as input in addition to the tokens.
Here we allow the model to process additional information on the
token level. This is achieved by having an extra embedding layer
for the extra tags as shown in Figure 1. The full embedding vector
representation of an input token is then obtained by concatenating
the embeddings of the token and the extra tag.

The additional information provided is obtained, on the one
hand, by a general domain learned NER model, namely the large
EN-Core-Web model of SpaCy1. This model can determine enti-
ties such as date (DATE), measures (QUANTITY), or organizations
(ORG). On the other hand, we used a model based on dictionary
lookup and flexible matching, namely OntoGene’s Biomedical En-
tity Recogniser (OGER) [6]. One advantage of this model is that we
can use domain-specific dictionaries with several million terms. In
this case, we used dictionaries containing anatomical (UBERON2),
disease (CTD3), and drug (RxNorm4) terms. A detailed list of the
extra tags can be found in the table 2.

4.3 RoBERTa
As an additional model, we used the pre-trained transformer lan-
guage model RoBERTa [10]. Unlike the widely used transformer-
based BERT model, RoBERTa is trained with a masked token that
is not statically introduced into the data but dynamically injected
in each mini-batch, thus increasing variability. In addition, the au-
thors used larger mini-batches for pre-training, which improved
perplexity. Furthermore, RoBERTa was not trained with the ob-
jective of predicting the next sentence, but with the objective of
predicting the full sentences. Unlike the BERT model, we did not
use a domain-specific version of the RoBERTa model.

4.4 Attributes identification
Besides identifying the span of text that refers to a Named Entity
(NE), another important part of the annotation process is identifying
and including, within the annotation, other aspects about the entity
that are also conveyed in the text and related to the entity’s type.

1https://spacy.io
2https://uberon.github.io
3http://ctdbase.org
4https://www.nlm.nih.gov/research/umls/rxnorm/index.html

Table 3: Statistics of Correlated Entity Tag and Attributes in
Training Set

(Tag, Attribute) Attribute Value Number of Occurrences

(certainty, d)

general 1
negative 148
positive 462

suspicious 191

(type, timex3)
date 26

duration 2
med 1

(state, t-test)
executed 19
negated 2

other 6

(state, cc) other 15
(state, r) other 1

Examples of these "aspects" are the degree of certainty about
a reported disease, the nature of a time expression, the execution
state of a test, and so on.

This information should be included as attributes of the corre-
sponding NEs tags. The attribute names correspond to the NE’s
detected aspect and the attribute value to the aspect’s value. For
example: for the aspect "degree of certainty of a reported disease", the
attribute name is "certainty", and the value can be positive, negative,
suspicious or general.

First, we explored the training set and manually inspected ran-
domly chosen samples. The objective was to try to detect some
patterns that we could utilize to infer the attributes.

We found a lot of interesting correlations between the entity
tags and the attributes. The statistics of such pairs are reported in
Table 3.

It was observed that certainty attribute was mainly associated
with entity tag ‘d’, the type attribute with ‘timex3’ and state mainly
with ‘t-test’. This in turn shows that detecting the attributes with
their values requires the knowledge of both the text and the en-
tity tags. Further, using the attribute “certainty” as a case study,
we observed that just the presence of the word “no/not” was a
good indicator of the attribute value. To advance this observation,
we computed the ratio of cases where “no/not” was found in ex-
amples of the “certainty” attribute. The results showed that the
difference of proportions correlates with the “certainty” value as
follows: certainty_negative: 0.5946, certainty_suspicious: 0.1204, cer-
tainty_positive: 0.0649.

Based on this, we hypothesize that a basic classifier based on
the presence of certain words could perform relatively well. Using
individual sentences and considering already detected entities, we
extracted examples for each entity type (e.g., D, CC, TIMEX3, T-
TEST, etc.) and extracted the words (left and right window) next to
the target term (named entity). Some examples are shown next:

• The patient was referred to our hospital with a chief com-
plaint of hemoptysis , and was diagnosed with non - small
cell lung cancer based on the findings of.window the CT scan
and bronchoscopy.
– Term: non - small cell lung cancer
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Figure 2: Number of tags per type in relation to the perfor-
mance of the different Systems for the English MedText clin-
ical reports.

– NE type: D, Attribute: certainty_positive
• Histopathological findings showed scattered hepatocellular
necrosis , which was thought to be coagulation necrosis ,
but there was no obvious sign of invasion of the lung cancer
into the liver.window.
– Term: invasion of the lung cancer into the liver
– NE type: D Attribute: certainty_negative

• Case report of a 68 - year - old male patient In November
2011 , the patient underwent a right hemicolectomy and D2
dissection of the.window colon for ascending colon cancer
with multiple liver and lung metastases .
– Term: hemicolectomy
– NE type: T-TEST Attribute: state_executed

We transformed the window’s text and the identified named
entity to features by applying TF-IDF. Those features and the en-
coded named-entity type were provided as inputs to a classifier
that was trained to infer the expected attribute_value (e.g., cer-
tainty_positive).

5 EXPERIMENTS
The following section presents the official results of the English
few-resource Named Entity Recognition subtask.

5.1 Named Entity Recognition
We have finetuned several pre-trained language models on a unified
dataset of English MedText RR and CR. We used different domain-
specific and general models as described in section 4, partly with
an extended input through the extra tags. In addition, we trained
all models on two augmented versions of the dataset as described
in section 3.2.

The results of the four submitted models are significantly dif-
ferent with a maximum distance of 0.064 in F1 score, with the
Bio+ClinicalBERT trained on the x10 augmented dataset on the
CR and RR performing the worst with F1 scores of 0.457 and 0.758,
respectively. We obtained the best results with the RoBERTa model
trained on the x10 augmented data set with an F1 score of 0.521 for
the CR data set and 0.800 for the RR obtained on the official test

Figure 3: Number of tags per type in relation to the perfor-
mance of the different Systems for the English MedText ra-
diology reports.

datasets. However, it is not clear whether the augmentation with
the x10 or x100 versus the domain-specific models is preferable,
since in the RR dataset the general RoBERTa model achieves the
second-best place, whereas in the CR dataset the domain-specific
BioBERT model performs second best. Both two ranked models
were trained on the x100 dataset, while the best model was trained
on the x10 dataset, but the difference in the F1 score is only 0.009
and 0.011 on the CR and RR datasets, respectively.

Both models trained on the x10 dataset were trained with a batch
size of 8, a learning rate of 4e-05, and for one epoch. The models on
the x100 dataset were trained with the same parameters but with a
batch size of 32.

5.2 Attribute identification
We used the vectorized window text, term text and target attribute
to train and evaluate a Support Vector Machine classifier (SVC).
We experimented with different windows sizes, finding the best
between 4 and 5 with a "weighted avg. F1" of 0.8070 (see fig. 4 ). For
the TF-IDF vectorization we used a maximum of 300 features and 1
as a minimum threshold of the document frequency, no stop words
filtering or any other pre-processing was applied. For the SVC we
used a radial basis function (rbf) kernel.

The estimator was trainedwith 80% of the data and the remaining
20% was hold-out for evaluation. The results of evaluating the
models in the test split during the training phase are shown in
Table 6 for the RR model and in Table 5 for the CR model.

6 DISCUSSION
In the following, we will discuss our results and difficulties encoun-
tered in performing our studies.

6.1 Named Entity Recognition
In general, we found that the number of tags in the training data
set correlated with the performance of the models as shown in
Figures 2 and 3. That is, the more tags of a type were in the training
dataset, the better the models generalized. Outliers are the drug
names (M-KEY) and dosages (M-VAL). Presumably, dosage amounts
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like 0.8 mg or 5 ml are easy to identify for the models due to the
uniform nomenclature, this fact could also facilitate the recognition
of the drug names.

Furthermore, contrary to our assumption, we could see that
the size of the tagged phrases does not give any indication of the
predictive performance of the models. Using the augmentation
method, it is surprising that an extreme extension of the data set
(x100) produces an almost unchanged performance of the models.

Finally, it is worth mentioning that while the results suggest that
the more domain-specific the model, the worse the performance,
this may be a fallacy, as the domain-specific models and the general
models represent different architectures. In our training runs, we
could see that with the same BERT architecture, the domain-specific
models were significantly more accurate. Due to the limited time,
we did not have the possibility to pre-train the RoBERTa models
on domain-specific data.

6.2 Attribute identification
Attribute inference was an optional part of the task. Due to time
constraints, we opted for a simple implementation using a clas-
sifier based on context words. Error analysis revealed that our
approach most likely suffered from low-frequency context words
in the training data: e.g., “subsided” or “(-)” as an indicator of cer-
tainty_negative. For example:

• Erythema around the nails ( - ) .
• Postoperatively, the pain of pancreatitis had subsided and
glucose tolerance had improved.

There are other attribute types for which our approach did not
achieve high accuracy. An example is “state_scheduled”, where we
observed that the words that are indicative of the scheduled state
are far from the NE (i.e., out of the window scope). The following
are two examples of such cases - the words that could indicate
the "scheduled" state are marked in bold and the window used is
underlined; as can be seen, the clues are out of the window scope:

• At a joint conference of the Department of Surgery , Internal
Medicine , and Radiology , it was decided to perform a per-
cutaneous transsplenic umbilical vein occlusion and splenic
artery embolization.window .
– Term: splenic artery embolization

• Therefore , we decided to improve splenic function by first
performing a PSE and then treating the gastric varices with
the BRTO procedure.window .
– Term: BRTO

In post-submission experiments, we observed that a highly un-
balanced attribute distribution (classes with thousands of examples
and others with tens of examples) was causing high bias in our es-
timators, mainly in the model for the CR dataset (macro F1: 0.2978).
After applying some techniques for addressing the imbalance, we
obtained a better macro F1 score (0.346 in CR), and, more impor-
tantly, we got better scores for underrepresented classes.

In general, the major weakness of our approach was the low
generalization shown when applied to the test data. This could
be related to the high bias of our submitted models which were
tuned to overrepresented attributes in the training set. Besides
applying techniques to deal with unbalanced data, another possible
approach would be to use embeddings. Instead of using textual

Figure 4: Performance of the attribute classifier for different
window sizes: y axis corresponds to the F1-weighted average
and x axis to the window size.

Table 4: Official and unofficial results of our systems com-
pared.

System Precision Recall F-Score

Validation Set (RR and CR joint)

Bio+ClinicalBERT+𝐸𝑇𝑥10 0.687 0.739 0.712
BioBERT+𝐸𝑇𝑥10 0.691 0.742 0.716
BioBERT+𝐸𝑇𝑥100 0.686 0.755 0.719
RoBERTa𝑥10 0.694 0.740 0.717

Test Set (CR)

Bio+ClinicalBERT+𝐸𝑇𝑥10 0.430 0.487 0.457
BioBERT+𝐸𝑇𝑥100 0.452 0.540 0.492
RoBERTa𝑥10 0.494 0.550 0.521
RoBERTa𝑥100 0.484 0.544 0.512

Test Set (RR)

Bio+ClinicalBERT+𝐸𝑇𝑥10 0.729 0.788 0.758
BioBERT+𝐸𝑇𝑥100 0.770 0.808 0.789
RoBERTa𝑥10 0.783 0.816 0.800
RoBERTa𝑥100 0.773 0.801 0.787

representations that are prone to suffer more from term sparseness,
word embeddings, even non-contextual embeddings, could help
to reduce this effect and generalize better to text windows unseen
during training. And finally, after our experiments, we think that a
deep learning approach based on pretrained contextual embeddings
could be a good option for future steps.

7 CONCLUSIONS
In this paper, we presented several transformer-based models for
the English NER subtask 1 of the Real-MedNLP shared task. We
have described and evaluated the results of our four domain-specific
and general models trained on an augmented version of the offi-
cial dataset. Furthermore, we have described our approach to the
optional attribute prediction task. Here we were able to show that
attribute prediction is possible using a low-complexity SVC architec-
ture. To conclude, using a transformer-based architecture and data
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Table 5: Classifier evaluation in the CR test split. For brevity,
classes with scores = 0.0 were omitted but considered in the
summary rows.

Attribute Precision Recall F-Score sup.
no attribute 0.8762 0.9159 0.8956 618
certainty_positive 0.7169 1.0000 0.8351 347
state_executed 0.7183 0.7484 0.7330 310
type_age 1.0000 0.6667 0.8000 36
type_date 0.5723 0.9500 0.7143 100
type_med 0.9077 0.6941 0.7867 85

accuracy 0.7746 1708
macro avg 0.2995 0.3109 0.2978 1708
weighted avg 0.6928 0.7746 0.7246 1708

Table 6: Classifier evaluation in the RR test split

Attribute Precision Recall F-Score sup.
no attribute 1.000 0.901 0.948 172
certainty_negative 0.912 0.912 0.912 34
certainty_positive 0.804 0.827 0.815 104
certainty_suspicious 0.571 0.800 0.667 35
state_executed 1.000 1.000 1.000 2
state_other 1.000 1.000 1.000 5
type_date 1.000 1.000 1.000 3

accuracy 0.873 355
macro avg 0.898 0.920 0.906 355
weighted avg 0.892 0.873 0.879 355

augmentation, we achieved the second-best performance among
the participating groups on both the English MedText-CR and -RR
official test sets.
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