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ABSTRACT 

In this NTCIR-16 Real-MedNLP shared task paper, we present 

the methods of the  ZuKyo-JA subteam for solving the Japanese 
part of Subtask1 and Subtask3 (Subtask1-CR-JA, Subtask1-RR-
JA, Subtask3-RR-JA). Our solution is based on a sliding-
window approach using a Japanese BERT pre-trained masked-
language model., which was used as a common architecture for 
addressing the specific subtasks. We additionally present a 

method that makes extensive use of medical knowledge for the 
same case identification subtask3-RR-JA. 

KEYWORDS 
Medical Natural Language Processing, Named Entity 

Recognition, Case Reports, Radiology Reports, Case 

Identification, Lung Cancer, TNM Staging, Transformer, Data 

Augmentation.  
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TEAM NAME 

ZuKyo 

 

SUBTASKS 

Subtask1-CR-JA, Subtask1-RR-JA, Subtask3-RR-JA (CI) 

 

1 INTRODUCTION 
It is not easy for researchers or companies outside of the 

hospital to have access to information stored in the electronic 
health records (EHR). For example, in Japan, the Next 
Generation Medical Infrastructure Act allows us to access 
medical information on an opt-out basis [1]. However, to the 
best of our knowledge, it is still very difficult to access texts 
and images in the EHR even under the Next Generation 
Medical Care Infrastructure Act. In order to promote research 
under this highly restrictive access policy to medical 
information, this competition (NTCIR-16) was held to establish 

a platform for analyzing EHR text using Natural Language 
Processing (NLP). 

1.1 Team Overview 

Our team consists of the JA sub-team and EN sub-team. 
Software programs of sub-teams were implemented based on 
weekly discussions between the JA and EN sub-teams. This 
paper describes the methods and results of the JA sub-team for 
the following three tasks: Subtask1-CR-JA (NER-CR-JA), 
Subtask1-RR-JA (NER-RR-JA), and Subtask3-RR-JA (CI-RR-
JA). For an overview of the three tasks, please refer to the 

organizer's paper [2]. 

1.2 Case Report (CR) 

As described above, strong access restrictions limit the use of 
raw EHR text in this competition. For this reason, open access 
Case Reports (CRs) submitted to conferences and journals were 
chosen as the target to analyze in this competition. As the 
organizer pointed out, the content of CRs is similar to that of 
EHR discharge summaries, where the process of a patient's 
diagnosis and treatment is summarized. Therefore, NLP for 
CRs is expected to be useful for also analyzing the EHR 

discharge summary. 

1.3 Radiology Report (RR) 

A RR represents a textual summary of findings in a medical 
image and is typically composed by a radiologist or a physician 
with training in this task. Most RRs in Japanese hospitals are 
written for CT and MRI examinations. In the Subtask1-RR-JA, 
and Subtask3-RR-JA (CI), RRs from lung cancer CTs are the 
targets to be analyzed. With the dominant research subject in 
radiology being image analysis, there is only limited experience 
with NLP of RRs, which makes this type of research 
challenging for radiology researchers. 

1.4 Named Entity Recognition (NER) of CR and 

RR 

NER has been studied intensively in past NLP studies. 
Therefore, the details of NER are omitted in this manuscript. 
Subtask1-CR-JA and Subtask1-RR-JA aim at extracting 

domain-specific sets of words from medical texts of CRs and 
RRs, respectively. Our implementation of NER is based on 
fine-tuning the BERT's Japanese pre-trained masked-language 
model [3,4]. Due to the small-sized dataset (N=148 for CR and 

N=72 for RR) in the NER tasks, we used data augmentation and 
increased the number of articles by a factor of 100. 

1.5 Case Identification (CI) of RR 

To create the dataset for the Subtask3-RR-JA (CI), multiple 
radiologists independently wrote RRs for the same sets of CT 
scans of several patients. Multiple RRs from the same patients 
are assigned the same group ID. Since the purpose of this task is 

to identify those RRs that describe the same CT case, it may be 
possible to use established methods for measuring document 
similarity, such as feature vectors extraction and comparison 
using Bag of Words techniques. However, the CI task presented 
us with unique challenges: For example, a Bag of Words 
approach may not work for this task, as the dataset consists only 
of RRs from lung cancer CT scans, where words are identical or 
quite similar.  

 

1.6 Feature extraction with TNM staging for 

Subtask3-RR-JA (CI) 

In order to group RRs without using NER, we used domain 
knowledge used in the diagnosis of lung cancer. Specifically, 
we applied knowledge of the TNM staging system of lung 
cancer to extract features from RRs. The TNM staging is the 
classification system to describe the progress of cancer, with the 
T factor indicating the extent of the primary tumor, the N factor  
the extent of lymph node metastasis, and the M factor the extent 
of metastasis to distant organs other than lymph nodes. Since all 

RRs in the Subtask3-RR-JA (CI) are diagnostic RRs for lung 
cancer, each RR contains sentences related to the TNM staging 
for lung cancer. Therefore, we decided to obtain the feature 
vector of the entire report by extracting features in terms of 
which sentences in RRs represent which TNM factors of lung 
cancer.  

For readers not familiar with the TNM staging, a 
simplified version of T, N, and M factors of the Union for 
International Cancer Control (UICC) version 8 [4] is described 
below. In our implementation, we modified some parts of TNM 
factors to improve the extraction of feature vectors. 

 

T factor (a simplified version) 

● T1: Size of lung cancer, <3 cm 

● T2: Size of lung cancer, 3-5 cm 
● T3: (Size of lung cancer, 5-7 cm) or (Local invasion 

of chest wall, parietal pericardium, phrenic nerve) 
● T4: (Size of lung cancer, >7 cm) or (Invasion to 

mediastinum, trachea, heart/great vessels, esophagus, 
vertebra, carina, recurrent laryngeal nerve) 

 

N factor (a simplified version) 

● N0: No regional lymph node metastasis 
● N1: Metastasis in ipsilateral peribronchial and/or hilar 

lymph node and intrapulmonary node 
● N2: Metastasis in ipsilateral mediastinal and/or 

subcarinal lymph nodes 
● N3: Metastasis in contralateral mediastinal, 

contralateral hilar, ipsilateral, or contralateral scalene, 
or supraclavicular lymph node(s) 

 

M factor (a simplified version) 

● M0: No distant metastasis 
● M1: Distant metastasis 
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As will be described later in detail, we estimated T, 
N, and M factors on a token/sub-token level with sentence-by-
sentence augmentation of the RRs. The data augmentation, 
training step, ensemble of the multiple models are very similar 
to the methods we used for NER. 

 

2 RELATED WORKS 

2.1 NLP techniques used in our implementation 

Recently, transformer-based NLP models have been used in 

various domains [3]. In our implementation, we used the 
Japanese BERT pre-trained masked-language model trained 
with the Japanese version of Wikipedia [4]. Since the dataset 
sizes for these three tasks were small, we expected that fine-
tuning of the BERT pre-trained model would be effective for 
obtaining good performance in these three tasks. We used the 
cl-tohoku model as the pre-trained Japanese BERT models 
which are available in Transformers by Hugging 
Face(https://github.com/huggingface/transformers). 

Since it was expected that using a fine-tuning 
approach (limiting the number of trainable layers) with BERT 
pre-trained models would not be sufficient for dealing with the 
limited number of datasets, data augmentation was also used in 
our implementation. In the past study, Easy Data Augmentation, 

a method for NLP data augmentation, was performed by 
randomly changing tokens in sentences [6]. Because Easy Data 
Augmentation is performed on token-level, Easy Data 
Augmentation was expected to deteriorate the performance in 
the NER and CI tasks. Therefore, we performed data 
augmentation on the NER-tag-level for subtask1 and on the 
sentence-level for the CI task. 

2.2 Medical NLP for CR or EHR 

There are several studies where medical NLP was used for 
analyzing CR or EHR. Peng et al compared three NLP tools for 

analyzing articles and abstracts of autism spectrum disorder 
obtained from PubMed [7]. Gurulingappa et al developed 
methods for the automatic extraction of drug-related adverse 
effects from CRs [8]. Based on their corpora, their method 
achieved a cross-validated F1 score of 0.70. Wang et al 
performed automatic classification of EHR into 7 types of 
infectious diseases using NLP [9]. They used an EHR of 20,620 
patient cases covering 7 types of infectious diseases. Schulz et 
al constructed a new corpus comprising annotations for NER in 

CR obtained from PubMed Central’s open-access library [10]. 
The corpus consists of 53 documents, which contain an average 
number of 156.1 sentences per document. Schulz et al 
compared four methods of NER and reported that Multi-Task 
Learning was the best method for NER of their corpus. 

2.3 Medical NLP for RR 

In radiology, content-based image retrieval systems for medical 
images have been studied intensively. For example, Müller et al 
summarize an overview of available literature in the field of 
content-based image retrieval systems for medical images [11]. 

On the other hand, compared to research with medical images, 
there are far less studies discussing NLP in radiology. Pons et al 
identified 67 relevant publications describing NLP methods that 
support practical applications in radiology for the following 5 
categories: diagnostic surveillance, cohort building for 
epidemiologic studies, query-based case retrieval, quality 
assessment of radiologic practice, and clinical support services 
[12]. Although several NLP systems were developed for these 5 

categories in radiology, Pons et al concluded that these systems 
were not actually used in routine clinical care or research. 
Recent NLP studies  involving RR include the automatic 
classification of findings in head CT scans [13], automatic BI-
RADS assessment in breast imaging [14], and the identification 

of abnormal findings in CT scans of children [15]. For Japanese 
RR, automatic classification of RR was investigated for eight 
diseases (Alzheimer’s disease, lung cancer, myocardial 
infarction, fatty liver, disc herniation, medial collateral ligament 
injury, Elbow fracture, Achilles tendon injury) [16]. 

3 METHODS 

In this section, we first describe the common and shared 
methods used for subtasks 1 and 3. After that, we will describe 
methods specific for the subtask3 (CI). 

3.1 Labeling of the data for NER 

The text data was first divided into tokens with MeCab, 
followed by sub-tokenization using WordPiece. The type of the 
entities provided from the organizer (i.e. <m>, <d>, <a>, etc.) 

was then added for each sub-tokens as the class label. The parts 
of the sentences without these entity labels were assigned a 
“other” label. This class label was further divided into two 
types. Specifically, if the token (or sub-token) was at the 
beginning of an entity, the flag to show the status (B-) was 
added to the label. If the token (or sub-token) was not at the 
beginning of an entity, this status flag (I-) was added to the 
token (label sets A). Label sets without discriminating (B-) and 

(I-) were also used for creating training dataset (label sets B). 
The examples of the class indices are shown in Tables 1 and 2. 
In our approach, estimation of the tag attributes was treated 
independently of the estimation of the entity class. In this way, 
we could use the same framework for estimating the tag 
attributes. Specifically, certainties (positive, suspicions, 
negative, general, correction) were assigned indices of 0,1,2,3,4 
and states (scheduled, executed, negated) were assigned indices 

of 6,7,8. 

 

Table 1. Example of class indices in label sets A and B. 

 

Class index Label sets A  Label sets B 

0  B-disease   disease 

1  I-disease 

2  B-timex3_date  timex3_date 

3  I-timex3_date 

4  B-timex3_time  timex3_time 

5  I-timex3_time  

6  B-timex3_dur  timex3_dur 

7  I-timex3_dur 

36  B-other   other 

37  I-other 

 

3.2 Our dataset format for NER 

An example of our dataset format is shown in Table 3. The 
articles were processed by MeCab, which split the articles’ 
plain text into tokens. These tokens were further divided into 
sub-tokens using WordPiece. With N={3,4,6,8,10,15,30,60}, a 
sentence consisting of N*2+1 sub-tokens was taken from each 
article in a sliding window manner, with the restriction that the 
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beginning of each sentence should be the beginning of the token 
(but not sub-token). For each sentence, class ID for the N+1th 
sub-token was the target for the BERT estimate (2nd column in 
Table 3). 

Table 2.  Example of class indices in Certainties and States. 

 

Class index Certainties  States 

0  positive 

1  suspicious 

2  negative 

3  general 

4  correction 

5     scheduled 

6     executed 

7     negated 

 

 

Table 3.   Example of the dataset with N=3. The target sub-
tokens (4th sub-token for this case) are shown in the bracket []. 

 

Sentence   Class index / label 

散見し, [明らか] な肺癌  28 / B_feat 

し,明らか [な] 肺癌の  36 / B_other 

,明らかな [肺] 癌の肝  0 / B_dis 

明らかな肺 [癌] の肝浸  1 / I_dis 

な肺癌 [の] 肝浸潤  1 / I_dis 

 

3.3 Our model  

To perform NER, we chose to use BERT-based topic modeling. 
Specifically, we fine-tuned BERT's Japanese pre-trained 
masked-language model to estimate class of the entity for the 

N+1-th sub-token from the sentence which consists of N*2+1 
sub-tokens. Input was a train of sub-tokens and the output to be 
trained was the class label [CLS]. The first column of the output 
of the pre-trained BERT model was further put into the dropout 
layers and the fully-connected layer. The number of features for 
this fully-connected layer was set to 41, such that all the classes 
we prepared for NER have the unique class ID. 

3.4 Data augmentation 

We consider that elements belonging to the same entity are 
exchangeable for creating augmented dataset for the NER task. 

Therefore, we first built a dictionary for each entity, and the 
augmented dataset was built based on the algorithm 1 shown 
below. This process was repeated 100 times for each article, 
resulting in 14800 (augmented) articles for CR-JA and 7200 
articles for RR-JA.  

3.5 Parameters for fine-tuning the model 

We used the following parameters to fine-tune the BERT pre-
trained model. 

● N: the number of sub-tokens before and after the 

target sub-token. 

● E: number or epochs 

● LR: learning rate 

● B: batch size 

● DO: probability for the dropout layer 

● V: if V>0, the number of learnable layers (at the 

bottom) in the pretrained BERT model. 

● A, B: the type of the label sets used to build the 

training dataset. 

Algorithm 1. Algorithm for the data augmentation. 

1. Choose a part of a sentence 

2. If the part is not tagged as an entity, use the original 
sentence part. 

3. if the part is tagged as an entity, 
4. If the entity E is either one of the class C={d, a, 

timex3, t-test, t-key, t-val, m-key, m-val}, randomly 
choose an element from the dictionary for the entity 
E. 

5. Continue until the end of the article. 

 

3.6 Model training for NER 

We split the dataset for a 5-fold CV for the model training. 
However, due to the limited amount of time, we only performed 
fold 0 of 5-fold CV (118 articles for RR and 57 articles for CR). 
Models were trained with varying parameters on a grid-search 
basis. Due to the limited amount of time, only part of the 
combination was completed for training. For final model 

training (used for ensemble inference), we used all the data with 
NER tags (148 articles for CR and 72 articles for RR). 

3.7 Inference of entity (NER tag) with ensemble 

For each sub-token, outputs of the several models after the 
softmax function were averaged to estimate a class label. The 
output after the ensemble was a 41-dimensional vector of 
probabilities for each sub-token. 

3.8 Inference of entity attributes 

We independently trained models to estimate the attributes 
(separately for certainties and states). The methods (parameters 
for fine-tuning the model, model training, inference (ensemble)) 
used were the same as the methods for NER. The outputs for 

certainties and states were finally combined with the estimates 
for the entities. An estimates for an attribute was only accepted 
when the corresponding entity had an attribute in the first place. 
Otherwise, the output of the model for the token attribute was 
ignored. 

3.9 Labeling of the data for CI 

We developed a dedicated method for CI. We did not use the 
tags and the attributes in the training dataset provided by the 
organizer. Instead, we built a sentence-wise tag dedicated to the 
radiology reports for TNM staging of lung cancer. The 

representative tag types used for this are shown in Table 4. 
Here, we used an approximation that each sentence in RR refers 
to only one of the classes we defined. Although descriptions of 
the TNM staging in RRs are not always correct, we decided to 
ignore such imperfections for this competition. In other words, 
we assumed that TNM factors were correctly described in all 
RRs. It was also possible that different patients had the same 
TNM factors. In order to deal with this problem, we modified 
some parts of the TNM factors. Specifically, metastases were 
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further split into bone and other metastases. The labeling for the 
training was performed by one of the authors with an 
experience of over 20 years in diagnostic radiology. 

Table 4.  Example of class indices used for the CI task. 

 

Class index Customized tag of TNM 

4  B-DistantMeta 

10  B-N0 

12  B-N2 

14  B-N3 

16  B-T1 

18  B-T2 

24  B-T3 

39  B-T4 

 

3.10 Model training for CI 

The method for model training was similar to the method used 

for NER except that we chose models with a weighted F-
measure >0.6 for the final ensemble-based inference.  

3.11 Estimation of TNM staging and CI 

The output of the ensemble of the trained models was first 
summarized as the number of tokens for each class for each 
report, and then the reports were summarized for T factor, N 
factor, and M factor by using an algorithm shown in Algorithm 
2. 

 
Algorithm 2. Algorithm for assigning one of the T, N, M factors 
from the output of the model for the article. The number of 
tokens for X is expressed as N(X). T(or N or M) factor for the 
article is expressed as f(T) or f(N) or f(M) 
For T factor 

1. if N(T1)=N(T2)=N(T3)=N(T4)=0, f(T) was left blank 

2. if N(T3) > 10, f(T)=T3 

if N(T3) > 0 and N(T2)=N(T1)=0, f(T)=T3 

3. else 

a. If N(T1) > 10, f(T)=T1 

b. else 

i. if N(T2) > N(T1), the f(T)=T2  

ii. else the T factor for the article was set 

to T1 

For N factor 

4. if N(N2) + N(N3) < 10, f(N)=N0 

5. else 

a. if N(N3) > 9, f(N)=N3 

b. otherwise f(N)=N2 

For M factor 

6. if N(BM1) + N(DistantMeta)==0, f(M)=M0 

7. else  f(M)=M1 

 

The method for CI from the estimated TNM staging (based on 
the number of tokens) is summarized in Algorithm 3. 

 

 
Algorithm 3. Procedure for assigning case number based on the 
estimated TNM staging.  

● T3N3M1 -> case 1 
● T2or1N3M1 -> case2 
● T3N3orBlankM0  -> case 3 
● T2N3M0 -> case4 
● T1orBlankN0Mx -> case5 

● T2N0Mx -> case6 
● otherwise -> case7 or case2 

 

Based on the information provided by the organizer, the test 
dataset for CI (63 radiology reports) should be divided into 7 
cases, each of which consists of 9 reports. However, we did not 
apply this knowledge to restrict the number of reports assigned 

to the same cases. 

4 RESULTS 

4.1 Results calculated by the organizers 

We submitted results of four different models for Subtask1-CR-
JA, four results for Subtask1-RR-JA, and one result for 
Subtask3-RR-JA (CI). For Subtask1-CR-JA and Subtask1-RR-
JA, the scores for the best model by the moderator’s criteria are 

described here. For Subtask1-CR-JA,, entityP, entityR, and 
entityF of all entity-level targets are 35.55, 35.74, and 35.65, 
respectively and jointP, jointR, and jointF of all joint-level 
targets are 28.82, 30.04, and 29.93, respectively. For Subtask1-
RR-JA, entityP, entityR, and entityF of all entity-level targets 
are 55.42, 65.64, and 60.10, respectively and jointP, jointR, and 
jointF of all joint-level targets are 40.16, 47.56, and 43.55, 
respectively. The F-measures of our best results for Subtask1-

CR-JA, and Subtask1-RR-JA, are shown in Tables 5-8. For 
Subtask3-RR-JA (CI), our score of Normalized Mutual 
Information was 0.4161 (* we found a bug in our code after the 
task deadline, and the number of tokens for stage T4 were all 
zero in our original submission. After fixing the bug and 
updating algorithms 2 and 3, the updated inference was scored 
as 0.4622). 

Table 5. F-measures for Subtask1-CR-JA in the tag-level 

 

Type of Named Entity F-measure 

All targets  35.65 

<a>   30.61 

<d>   45.41 

<m-key>   33.75 

<m-val>   20.34 

<t-key>   13.86 

<t-test>   28.23 

<t-val>   13.12 

<timex3>   48.30 
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Table 6.  F-measures for Subtask1-CR-JA in the joint-level 

 

Pair of Named Entity and Attribute F-measure 

All targets   29.93 

<d> + general   6.35 

<d> + negative   8.33 

<d> + positive   37.51 

<d> + suspicious   0.00 

<m-key> + executed  26.25 

<m-key> + negated   28.57 

<m-key> + other   0.00 

<m-key> + scheduled  0.00 

<t-test> + executed   29.65 

<t-test> + other   0.00 

<timex3> + age   68.90 

<timex3> + date   46.42 

<timex3> + duration  0.00 

<timex3> + med   47.06 

<timex3> + misc   2.00 

<timex3> + set   25.64 

<timex3> + time   6.45 

 

Table 7. F-measures for Subtask1-RR-JA in the tag-level 

 

Type of Named Entity  F-measure 

All targets   60.10 

<a>    62.71 

<d>    59.01 

<t-test>    44.16 

<timex3>    91.43 

 

Table 8.  F-measures for Subtask1-RR-JA in the joint-level 

 

Pair of Named Entity and Attribute F-measure 

All targets   43.55 

<d> + positive   41.15 

<d> + suspicious   12.24 

<d> + negative   2.56 

<d> + general   0.00 

<t-test> + executed   40.00 

<t-test> + negated   0.00 

<t-test> + other   0.00 

<timex3> + date   9.33 

<timex3> + duration  0.00 

<timex3> + med   80.00 

 

 

 

4.2 Dataset size after data augmentation 

After the data augmentation, the number of articles for 
Subtask1-CR-JA was 11800 for the parameter optimization 
session, and 14800 for the final training session. Similarly, the 
number of articles for Subtask1-RR-JA and Subtask3-RR-JA 
(CI) was 5700 for the parameter optimization, and 7200 for the 
final training session. The number of lines after building the 
training dataset was approximately 1605K (N=60) to 1940K 

(N=3) for Subtask1-CR-JA, 362K (N=30) to 436K (N=3) for 
Subtask1-RR-JA, 157K (N =60) to 201K (N =3) for Subtask3-
RR-JA (CI). 

 

4.3 Models used for the ensemble (Subtask1-CR-

JA, Subtask1-RR-JA, Subtask3-RR-JA (CI)) 

Of the four submitted models, we describe here the model with 

the best score according to the organizer’s evaluation. Our best 

model for the Subtask1-CR-JA was an ensemble of 35 models. 

As mentioned in the methods section, we used two types of 

label sets for training the model. Our best model was the 

ensemble of the models trained with label sets A (N=17) and 

label sets B (N=18). For the entity attributes (both for 

certainties and states), an ensemble of 7-8 models was used for 

the final inference (7 for states, and 8 for certainties). Similarly, 

for Subtask1-RR-JA, an ensemble of 15 models was used for 

the entity labels, and an ensemble of 8 models was used for 

entity attributes. As mentioned in the methods, the threshold of 

weighted F-measure >0.6 was used to select models for the CI 

task. The model that met this criterion (at the time of 

submission) was 11. 

4.4 Sub-token level F-measures for Subtask1-

CR-JA with label set A 

To compare the performance of the models with different 
training parameters, the sub-token level F-measures for the 

validation dataset in our fold-0 data are summarized in Table 9. 

4.5 Results of the case identification 

By applying the algorithm shown in Algorithms 2 and 3, the 
estimated number of reports for each case ranged between 6 to 
16. As shown, the official score of our submitted data was 
scored by the normalized mutual information. Our score was 
0.4161 (updated score, 0.4622). 

5 DISCUSSION 

5.1 NER 

As shown in Figure 1, the sub-token level F-measures tend to 
be better with a larger number of N (the number of tokens 
before and after the target token) for models with no trainable 
layers in BERT (v=0). On the other hand, models with N=3 and 
12 trainable layers (v=12) performed better than models with  
v=0. However, for entities such as the disease and the anatomy, 
models with a larger N(=30) at epoch 3 (brown line in Figure 1) 
performed better than the models with v=12 (green and red 

lines in Figure 1). The improvement of the models over the 
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     Figure 1.  The summary of the representative models for Subtask1-CR-JA is shown. The sub-token level F-measures for each entity 
class for the validation dataset in our fold-0 data for the representative models with different training parameters are shown. The 
number of supports (i.e. the number of tokens in the validation dataset) is shown in blue bars. The models with twelve trainable layers 

(v12) are shown in green and red lines. The remaining models are trained with v=0. Batch size=32, Dropout=0.2. Learning rate 

(LR)=0.00004 was used for v12 and LR=0.00002 for v0. Abbreviations: n=number of tokens before and after the target token, 
e=number of epochs, b=batch size, do=dropout, v=number of learnable layers in the pre-trained BERT model. 

     Figure 2.  The summary of the representative models used for Subtask3-RR-JA (CI) is shown. The sub-token level F-measures for 
each entity class for the validation dataset in our fold-0 data for the representative models with different training parameters are shown. 
The number of supports (i.e. the number of tokens in the validation dataset) is shown in blue bars. All the models shown here are 
trained with v=0. Batch size=32, Dropout=0.2, learning rate (LR)=0.00002. Abbreviations: n=number of tokens before and after the 

target token, e=number of epochs, b=batch size, do=dropout, v=number of learnable layers in the pre-trained BERT model. 

 

epoch varied for the target entity classes. The reason for the use 
of a small N for models with v=12 was to avoid overfitting. 
However, the number of models who finished training at the 

deadline of the competition was not sufficient to analyze this 
aspect. It should be noted that the models with a smaller N and 
larger v(=12) performed similarly (with some difference) to the 
models with a large N and smaller v(=0). This difference was 
advantageous for our ensemble inference strategy. We were not 

able to choose the model used for the inference based on the 
model performance. Instead, we relied on the ensemble strategy 
itself. Ideally, the best model should be chosen for each N. 

5.2 CI 

As described in the organizers’ overview paper, the CI task of 

RRs does not represent a likely clinical situations. Therefore, it 
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is quite difficult to find previous studies discussing a related 
task. However, the CI task can be seen as equivalent to a similar 
sentence retrieval task, for which much prior work exists. 
Nevertheless, we could not find previous studies where TNM 
staging was used for similar sentence retrieval of RRs. On the 

other hand, there are several studies where information about 
TNM staging was extracted from free text of RRs. Nobel et al 
developed and evaluated their extractor of the T factor from 
RRs of lung cancer patients [17]. The accuracy of their 
extractor of the T factor was 0.89. Gupta et al developed an 
NLP system for extracting TNM factors, and the accuracy of 
their system was up to 59% for the T factor, 36% for the N 
factor, and 41% for the M factor [18]. Hu et al extracted 
information about the TNM staging of lung cancer and lung-

cancer-related findings from Chinese free text of RRs [19]. 
Their BERT-based system consisted of three modules (NER, 
relation classification, and post-processing modules), which 
achieved a macro-F1 score of 94.57% and a micro-F1 score of 
96.74% for all the 22 questions related to the TNM staging. 

In this competition, the dataset for the CI task is the same as for 
subtask1, in which annotations for NER are available. If we can 
correctly estimate the <a>-, <d>-, and <f>-tag of NER 
(including attributes) in the test set of this task, we might be 
able to group RRs effectively. However, this approach depends 
on the performance of the NER subtask. In addition, 
relationships between the entities should also be correctly 
estimated. Therefore, we decided not to use the NER-based 

method for grouping RRs. Instead, we decided to fully exploit 
the fact that the document (radiology report) aims at describing 
TNM staging, which we used as the training label. Figure 2 
shows the performance of the representative models trained for 
this task. Although the validity of adding a “tag” to each 
sentence is debatable, we found that this type of annotation is 
learnable. The annotation effort of our method is low because 
only one label is required for each sentence (as comparted to 
each word or phrase). However, this method requires 

knowledge about the TNM staging system. The models with 
epochs 4 (green and brown) tend to show a lower  performance 
compared to other models with the same number of epochs 
(orange and purple, respectively). This could be due to 
overfitting indicating that the augmentation strategy was not 
very effective compared to the one used for the NER task. 

6 CONCLUSION 

In this manuscript, we have described our approach for the three 
tasks: Subtask1-CR-JA (NER-CR-JA), Subtask1-RR-JA (NER-
RR-JA), and Subtask3-RR-JA (CI-RR-JA) based on a sliding-

window approach using Japanese BERT pre-trained masked-
language model. A lot of methods used for these subtasks are 
shared, regardless of the task differences. We also discuss a 
method that makes extensive use of medical knowledge for the 
same case identification subtask3-RR-JA. 
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