
NTCIR-2 Experiments Using Long Gram Based Indices

Takashi SATO Nao HATTA Koji HIRAIWA
Kihei KOBATA Akihiro FURUSHO Koto HAN

Osaka Kyoiku University
4–698–1 Asahigaoka, Kashiwara, Osaka, Japan

sato@cc.osaka-kyoiku.ac.jp

Abstract

Long gram based indices are experimented at
NTCIR-2. In making gram based indices, no anal-
yses such as morphological ones are required. The
accessing number, titles, abstracts and keywords are
extracted from NTCIR-2 documents. The total index
size is 1.43Gbyte and time to make indices is about
100 minutes. Average retrieval time per topic takes 21
seconds since documents are ranked in a Perl program
which is simple and not fast. Ranking algorithm used
is based on a traditional probabilistic model, and the
result is standard average precision.
Keywords: long gram based index, gram coding, NT-
CIR.

1 Introduction

The use of Web pages, on-line documents, elec-
tronic books, newspapers, and so on, which we can
retrieve directly from the internet using computers, is
increasing more and more these days. In order to make
the best use of the potential information which these
on-line texts contain, we need the means to access ob-
jective information efficiently. In particular, we should
be able to access arbitrary strings in the text at high
speed. Retrievals of fixed keywords, which are pre-
pared in advance, is not sufficient to support retrievals
from such diverse sources.

When we retrieve text by uni-string, the output is
often too large. So we have to squeeze the result
by successive retrievals and strings which relate to a
retrieved string may be added. Also, some retrieval
systems can adjust queries interactively based on re-
trieved results. In this way, many retrieval results have
to be combined organically in order to serve the user’s
purpose. Therefore, string retrieval engines should be
fast.

To realize fast retrieval from a large text, indices
are indispensable. Indices based on sistring are dedi-
cated to fast string retrieval[1, 2, 3, 4, 5]. Suffix array (or
PAT array), which is made from sistrings, is often used

for string search, however, it is very inefficient when
text size exceeds main memory size. Recently,n-gram
based indices have drawn attention since they have low
construction cost and do not require intensive process-
ing such as bit operations[6, 7, 8, 9, 10].

Not only speed but also size is an important el-
ement of indices. Since oriental languages, includ-
ing Japanese, have a large alphabet, it is often re-
marked that indices tend to become very large in these
cases[6, 10]. Conversely, if we reduce the index size,
many false drops occur. Consequently, an index struc-
ture which allows both low space overhead and a low
false drop rate is required.

To meet the above requirements, we have been
studyingn-gram based indices which differ from stan-
dardn-gram indices in the following ways[11, 12, 13].

[long gram] Usually, strings shorter than the gram
are not retrievable[6, 7, 8, 9, 10]. If we want to use a 3-
gram index for example, we have to prepare not only
a 3-gram but also a uni and a 2-gram index. From
the space cost viewpoint, we can not use a large gram
index. However, by turning the index into a tree struc-
ture, we have seen that shorter grams may be retrieved
by sequential scan of leaves so that indices for shorter
grams become unnecessary.

[no position] Usually, occurrences of a gram are
recorded in terms of a document number and an off-
set (called position) and the index manages such pairs
of data[6, 7, 8, 9, 10]. If a set of grams, which are made
from decomposition of a retrieve key, are found in a
document, the result is a false drop if the grams are
not adjacent in the document. So position is necessary
to examine the adjacency of grams. However, we will
not store position. This is because, (1)By using long
grams, the key often fits inside a gram. We are guaran-
teed no false drop in these cases. (2)Even if the key is
long and divided into grams, false drops seldom occur,
because candidate documents are sufficiently limited
by the high selectivity of long grams. (3)If necessary,
one can determine whether or not the result is a false
drop by accessing the original text.

[gram coding] Usually, a gram is made from sim-
ple concatenation of characters which compose the

gram[7, 10]. Or some hashing is applied to the gram
with some parameters such as frequency[6, 8]. How-
ever, hashing causes false drops because of collisions
among hashed values. We will code the gram so as to
make the index compact and a good filter with no false
drop. We avoid intensive processing such as bit oper-
ations while searching an index. Once a gram or a set
of grams is made from the key, searches of an index
are processed efficiently by word or byte sized units.

We experimented our long gram based indices at
NTCIR-2. Since our indices are based on grams,
no analyses such as morphological ones are required.
However, we used NTCIR-2 segmented topic data in
order to search words and compound words. We made
indices from titles, abstracts and keywords of NTCIR-
2 documents. The total index size is 1.43Gbyte and
time to make indices is about 100 minutes. Average
retrieval time per topic takes 21 seconds since docu-
ments are ranked in a Perl program which is simple
and not fast. Ranking algorithm used is based on a tra-
ditional probabilistic model, and the result is standard
average precision.

2 Definitions

The alphabet is denoted by�. �(= j�j) denotes
the size of the alphabet. Although any set of symbols
can be an alphabet, we used Japanese EUC two byte
characters (� = 8836) in our experiments. Atext re-
trieved is a collection ofm documents. The number of
characters in thei-th document isni(1 � i � m). The
size of the whole text isn(=

Pm

i=1 ni), which is con-
sidered too large to be put in main memory. Instead it
is put in secondary memory.

We extract strings calledgrams which start at ev-
ery character from all documents, code and sort them,
and then make an index. The index is also put in sec-
ondary memory. Although the number of characters
which constitute a gram is not constant, coded grams
(called gram values) are fixed lengthwg[byte] in or-
der to make retrieval fast. Since the index is put in
secondary memory, pointers in it are offsets from the
head of the file. The size of the pointers iswp[byte].
The result of retrieval is a set of document numbers.
Document numbers can be represented inwd[byte].

A string sought is akey k. A key is composed of
characters in� and coded in the same method as grams
are. The size of a coded key islk[bit].

Since the text and index are put in secondary mem-
ory, we have to transfer data between main and sec-
ondary memory while processing. Data are transferred
in blocks of sizeB[byte].

3 Gram Based Index with Tree Structure

We propose an index which consists of aroot, a leaf
and alocator(see Fig.1). The elements of a leaf are

slots. Slots contain a pair consisting of a gram value
and a pointer. The pointer points to a bucket in the lo-
cator. Each bucket has document numbers in it. The
bucket, which is pointed to by a slot, stores the doc-
ument numbers where the string corresponding to the
gram value in the slot is found.

root

leaf

locator

text

in main memory

tree structure
gram code

pointer

buckets

.

Figure 1. Gram Based Index Structure

As a leaf of a B–tree[14] stores not only keys but also
pointers, we can fill a leaf with not only gram values
but also document numbers.

However, we separate them to avoid unnecessary
reading of document numbers when we are searching
for a gram value in the leaf. We can also avoid uncom-
pressing unnecessary document numbers in the case of
a compressed index.

The root stores the gram values of regularly spaced
slots of the leaf in order to guarantee only one block
access to any required slot. The root is compact and
can be put into the work space of the main memory
provided the retrieved text is smaller than a few dozens
of gigabytes. If we can not fit the whole root in main
memory, we can make it into a multi-leveled structure,
i.e. a tree.

3.1 Space Cost

The size of a slot in the leaf iswg + wp[byte]. The
number of grams made isn, since we make grams
starting at every character of all documents. However,
we do not save the same gram values repeatedly into
the leaf. We call this removal of redundancies unifi-
cation with associated ratious(0 < us � 1). The
gram values in slots of the leaf are arranged in as-
cending order. The pointers in slots are also in as-
cending order since buckets of the locator are con-
catenated in the order of the corresponding gram val-
ues. We can compress ordered number sequences
by run-length encoding[16] with a compression ratio
�s. Therefore, we estimate the size of the leaf to be
�susn(wg +wp)[byte].

As for the locator, since we do not repeatedly save
the document number when a gram value occurs more

than once in a document, the locator is unified in the
ratio of ud. Since the occurrence of gram values in
a document is less frequent than in the whole text,
0 < us � ud � 1. Again, since the document num-
bers are in ascending order in a bucket, we can com-
press the leaf in the ratio of�d using run-length en-
coding. Thus we estimate the size of the locator to be
�dudnwd[byte].

Although we can compress the root by run-length
encoding, we ignore its space cost because the root is
far smaller than the leaf.

From the above, we estimate the total space cost to
be

nf�sus(wg + wp) + �dudwdg [byte]: (1)

3.2 Construction Cost

We estimate the construction cost as the number of
block accesses required to make an index. First we
make batches, which are pairs of a gram value and a
document number, and put these in the work space of
the main memory. Then we merge these batches to
make an index[15]. Each batch is also sorted, unified
and coded by run-length encoding.

We first estimate the cost to make the batches.
2n=B blocks are accessed in order to read the whole
text assuming 1 character is 2 bytes. After each batch
is made in main memory, it is stored in secondary
memory batch by batch. Although a batch has no root
since it is not used for retrieval, the leaf and locator
have the same structure as in the index. We estimate
the cost to make the index as

nf�0su
0

s(wg + wp) + �dudwdg=B; (2)

where�0s andu0s (0 < �s � �0s � 1, 0 < us � u0s �
1) are respectively the batch’s unification ratio and its
compression ratio due to run-length encoding.

The cost to merge batches is the sum of the cost
to read batches (equation (1)/B) and to write an index
(equation (2)).

From the above, we estimate the total construction
cost to be

nf2+(�sus+2�0su
0

s)(wg+wp)+3�dudwdg=B:(3)

3.3 Retrieval Cost

The retrieval algorithm and space cost for a tree
structured index are described in detail in [12]. We
rewrite the equations for retrieval cost found in that
paper using the symbols defined in Section 2.
[A] lk just fits inwg

1 + dMwd=Be; (4)

whereM is the number of matches for the retrieval
key.

[B] lk is coded shorter thanwg

d
X

i

(wg + wP)=Be + d
X

i

Miwd=Be: (5)

P
i means summation over all grams which have the

key as prefix.Mi is the number of matches for thei-th
matching gram.
[C] lk is coded longer thanwg

X

j

1 +
X

j

dMjwd=Be: (6)

P
j means summation over all grams which are sub-

strings of the key.Mj is the number of matches for
j-th component gram.

4 Gram Coding

w

Ci+3Ci+2Ci+1Ci

Ci+3 Ci+4 Ci+5

Ci+2 Ci+3 Ci+4 Ci+5

Ci+6Ci+4 Ci+5

Ci+1 Ci+2 Ci+3 Ci+4 Ci+5

g

Figure 2. Example of Gram Coding. (
Shadowed portions are filled with bit 0)

A character which appears very often is not effec-
tive as a filter. Therefore, we will give it a short length
for gram coding in order to put more characters in a
gram. Conversely, since a rare character is a very ef-
fective filter, we give it a longer length. Since we code
grams of a fixed length for fast retrieval, the number
of characters in a gram is variable. For an equal length
of gram valuewg, the proposed method will lower the
chance of false drops compared with earlier methods.
Conversely, if we allow the same false drop rate, we
can choose a smallerwg. That is, we expect that we
can make a more compact index with no false drop re-
trieval in practice. Figure 2 shows an example of gram
coding for a string ofcici+1ci+2ci+3ci+4ci+5ci+6.

The space, construction and retrieval cost is the
same as in Section 3. However, notice thatus; ud; �s
and�d change depending on the coding.

5 Models and Analysis

In order to estimate the false drop rate of retrievals
with an index whose grams are coded in the manner of
Section 4, we analyze selectivity using a model.

5.1 Models for Characters and Strings

We assume no correlations among characters in the
text and in the key. We make a coding table for each
character in the alphabet. The Huffman code[17] is
used to code characters with reference to their fre-
quency of appearance in the text. We assume this cod-
ing can be done nearly optimally, i.e. we can code a
characterci, whose appearance ratio isp(ci)(� 1), in
� log2 p(ci)[bit].

The average code length of all the characters in the
text is represented bylc = � log2 p(ci)[bit]. Then the
average selectivity per character becomes1=2lc which
is nearly equal to1=� by assumption, i.e.lc ' log2 �.

5.2 Analysis

To simplify the analysis, we use an average code
length oflc for coded characters.

5.2.1 Selectivity of Grams

A gram is8wg[bit] long. However, the effective bits
are reduced to8wg � lc=2 becauselc=2 is a fraction
when we pad characters coded with lengthlc. Let
lg [bit] denote this effective gram length. Since we as-
sume there are no correlations among characters, the
selectivity of a gram becomes

1=2lg : (7)

5.2.2 Selectivity of the Key

[A] lk � lg
Since the coded key can fit inside a gram, the selec-

tivity does not depend onlg . It is estimated directly
from lk.

1=2lk : (8)

There are no false drops in this case.
[B] lk > lg

nk = lk=lc characters are coded in a key, and
ng = lg=lc characters are coded in a gram on average.
Therefore, a key is divided intonk � ng + 1 grams
on average. We retrieve all grams and compute the set
product of all the document number sets so obtained.

For example, we will explain the case whennk = 5
andng = 31. If k = c1c2c3c4c5, a set of grams be-
comesfc1c2c3; c2c3c4; c3c4c5g. To simplify the anal-
ysis, we assumec1; c2; c3; c4; andc5 are different from
one another.

1We intentionally use a smallng to simplify the analysis.

Using the index, we get document numbers as re-
trieval results. Since we do not store the starting posi-
tions of grams in a document, those documents which
contain not only (0)c1c2c3c4c5 but also (1-1)c1c2c3
+ c2c3c4c5, (1-2)c1c2c3c4 + c3c4c5 or (2)c1c2c3 +
c2c3c4 + c3c4c5 are retrieved2. Needless to say, the
cases (1-1),(1-2) and (2) are false drops. (1-1) and
(1-2) are strings which we can make from the key
by dividing at one point. Similarly case (2) is made
by dividing the key at two points. The selectivities
are (0)1=25lc , (1-1)(1-2)1=27lc, and (2)1=29lc respec-
tively.

In general, the selectivity when the key really is in
the text is (0)1=2nklc . The selectivity when the key
is divided at one point is (1)1=2nklc � 1=2(ng�1)lc

and there arenk�ngC1 such cases. The selectivity
when the key is divided ati(� nk � ng) points is
(i)1=2nklc�1=2i(ng�1)lc and there arenk�ngCi cases.
Consequently, the total selectivity is the sum of the
above.

1=2nklc �

nk�ngX

i=0

nk�ngCi=2
i(ng�1)lc

= 1=2nklc � f1 + 1=2(ng�1)lcgnk�ng : (9)

We have applied the binomial theorem to the summa-
tion. Except for the case (0), these are false drops, and
their probability is

1=2nklc � f(1 + 1=2(ng�1)lc)nk�ng � 1g: (10)

Therefore, if the above equation�ni is far smaller
than 1 for1 � i � m, false drops are negligible in
practice in our model.

5.3 Limitations of Models

In Section 5.1, in order to simplify the analysis,
we assumed that there was no correlation between the
characters in the text and those in the key. However,
in practice there is correlation among these charac-
ters. Therefore, the analytical results do not neces-
sarily reflect real key searches quantitatively. How-
ever, based on the analysis we know qualitatively how
key and gram length influence the selectivity and the
false drop rate. As mentioned before, the code given
to each character is determined by its frequency of ap-
pearance. The higher the frequency, the shorter the
length of the code assigned. Since punctuation char-
acters such as space, period, comma etc. have weak
correlation with the strings which precede and follow
them, we know that longer codes are appropriate for
these characters.

2Strings connected by ‘+’ are found separately in the same doc-
ument.

6 Experimental Results

The computer used is COMPAQ DS-20(CPU: Al-
pha 21264 500MHz, Main Memory: 4Gbyte and
Hard Disks: 8msec average seek time, and 3 msec
average latency time). We got a target text by
concatenating the files named ntc2-j0g and ntc2-j0k
of NACSIS Test Collection 2(NTCIR-2). We ex-
tracted Accessing Number(ACCN), Title(TTL), Ab-
stract(ABST) and Keywards(KYWD) from a target
text. We made two n-gram based indices, one from
TTL and the other is from ABST and KYWD. The size
of indices are 95Mbyte and 1,329Mbyte respectively.
The time to make indices are 266sec and 4,811sec re-
spectively, 85min in total. We setwg = 6. Table 1
shows the distributions of the number of characters in
every gram for two indices. ACCN was put on a sep-

Table 1. Distributin of the number of char-
acters in every gram (�106)

2 3 4 5 6
TTL 1.0 1.2 6.8 10.6 0.47

ABST & KYWD 1.5 14.0 121 205 17.8

arated file and used as a translation table from doc-
ument numbers which are counted from the top of a
target text. Its size is 7Mbyte. Then the total size for
retrieval is 1,431Mbyte. Including extraction step, the
total time to make indices is about 100min.

We made queries from given topic files (topic-j101-
150 and topic-w101-150). Keys for indices search
are words in Description and Concept field of the
above files. Using topic-w101-150 in which com-
pound words are segmented in words, every possible
combinations of words are made of a compound word.

We search keys from Description by using TTL
index, and keys from Concept by ABST-KYWD in-
dex. Then we ranked documents, which are retrieved
by search keys for each topic, using probabilistic
model[18] written in a Perl program. Processing time
to search keys and to rank documents for all 49 topics
is 1,034sec, then the average is 21sec.

7 Conclusions

We experimented our long gram based indices at
NTCIR-2. Since our indices are based on grams,
no analyses such as morphological ones are required.
However, we used NTCIR-2 segmented topic data in
order to search words and compound words. We made
indices from titles, abstracts and keywords of NTCIR-
2 documents. The total index size is 1.43Gbyte and
time to make indices is about 100 minutes. Average re-
trieval time per topic takes 21 seconds. Ranking algo-
rithm used is based on a traditional probability model,
and the result is standard average precision.

References

[1] Gonnet, G., Baeza-Yates, R. and Snider, T., New In-
dices for Text: Pat Trees, inInformation Retrieval:
Data Structure & Algorithms chapter 5, Frakes, W. and
Baeza-Yates, R. Ed., pp. 66–82 (1992).

[2] Shang, H. and Merrett T., Trees for approximate string
matching, IEEE Trans. Knowledge and Data Eng.,
Vol. 8, No. 4, pp. 540–547 (1996).

[3] Itoh, M., An Efficient Method for Constructing Suffix
Arrays of Large Texts,IPS Japan SIG Notes, 99-NL-
129-5 (1999).

[4] Yamashita, T., Fujio M. and Matsumoto Y., Language
Independent Tools for Natural Language,Proc. 18th
ICCPOL, pp.237–240 (1999).

[5] Ferragina, P. and Grossi, R., Fast string searching
in secondary storage: Theoretical developments and
experimental results,Proc. ACM-SIAM Symposia on
Discrete Algorithms, Vol. 7, pp. 373–382 (1996).

[6] Ogawa, Y. and Iwasaki, M., A new character-based in-
dexing method using frequency data for Japanese doc-
uments,In Proc. 18th ACM SIGIR Conf., pp. 121–129
(1995).

[7] Sugaya, N.et al., A full-text search system for large
Japanese text bases using n-gram indexing method,
Proc. 53th Annual Convention IPS Japan, 5T–2,3
(1996).

[8] Akamine, S. and Fukushima, T., Flexible string inver-
sion method for high-speed full-text search,Proc. Ad-
vanced Database Symposium ’96 (1996).

[9] Matsui K., Namba, I. and Igata, N., Full-text searching
engine for large-scale data,Proc. 1997 IEICE General
Conference, D–4–6 (1997).

[10] Kikuchi, C., A fast full-text search method for
Japanese test database,Trans. IEICE, Vol. J75-D-1,
No. 9, pp. 836–846 (1992).

[11] Sato, T., Fast full test search with free word using TS–
file, Proc. 19th ACM SIGIR Conf., p. 342 (1996).

[12] Sato, T., Fast full test retrieval using gram based tree
structure,Proc. ICCPOL ’97, Vol. 2, pp. 572–577
(1997).

[13] Sato, T.et al., Gram based full test search system
and its application,IPSJ SIG Notes, 98–DBS–114–2
(1998).

[14] Knuth, D.: The Art of Computer Programming: Vol.3
Sorting and Searching, 2nd Ed., Addison-Wesley,
Reading, Mass., pp. 481–489 (1998).

[15] Noda, J., Endoh, A. and Sato, T., Creation and update
of indices for an-gram based fill text retrieval system,
Proc. IEICE DEWS’98 (1998).

[16] Zobel, J., Moffat, A. and Sacks-Davis, R., An efficient
indexing technique for full-text database,Proc. 18th
Int. Conf. on VLDB, 1992, pp. 352–362.

[17] Huffman, D.A., A method for the construction of
minimum-redundancy codes,Proc. IRE, Vol. 40, pp.
1098–1101 (1952).

[18] Robertson, S.E. and Walker, S., Some simple effective
approximations to the 2-Poisson model for probabilis-
tic weighted retrieval,Proc. 17th Int. Conf. Research
and Development in Information Retrieval, pp. 232–
241 (1994).

