

NTCIR-3 PAT Experiments at Osaka Kyoiku University

—Long Gram-based Index and Essential Words—

Takashi SATO Tomohiko SATOMOTO Koto HAN
Osaka Kyoiku University

4-698-1 Asahigaoka, Kashiwara, Osaka, Japan
sato@cc.osaka-kyoiku.ac.jp

Abstract

Long gram-based indices are experimented at
NTCIR-3 patent task. To make gram-based indices,
no analyses such as morphological ones are required.
The docno, abj, clj and dej tag fields are extracted

from NTCIR-3 patent corpus. The total index size is
11.4Gbyte and time to make indices is about 8.7
hours. Median search time per word from abj and dej
index is 9.8msec and 91.8msec respectively. Average
retrieval time per topic takes 73 seconds since
documents are ranked in a Perl program, which is
simple and not fast. Ranking algorithm used is based
on a traditional probabilistic model. We also tried to
set essential words in a query.
Keywords: long gram based index, gram coding,
essential word, NTCIR

1 Introduction

Patent retrieval using computers is commonplace
today in patent applications and examinations,
however, NTCIR-3 patent task is novel since it
regards patent retrieval as retrieval task and articles
from newspaper as topics. Nowadays patent
documents are accessible via internet, the chances
ordinal people retrieve patents will increase more and
more from now on. Specialists sometimes say that
they can find words in mind well using full text
retrieval systems than keyword retrieval systems.
Among full text retrieval systems, systems whose
indices are based on suffix array[1-5] or grams [6-10]
are effective, we think, since every character

sequences which include words, compound word, etc.
are retrievable. In making indices, they need no
dictionary and no morphological analyses.

In order to make suffix array efficiently, we have
to put corpus on computer main memory. So one
problem of suffix array is that we can not make

indices for big corpus.
The size of corpus for NTCIR-3 PAT is 18Gbyte,

which is far bigger than that of former NTCIR tasks.
Since this size exceeds main memory capacity of
most computers, it is impossible to make suffix array
indices practically.
 On the other hand, general gram-based indices are
thought to have following problems.
(1) The size of index becomes huge when gram
length is more than 3 for Japanese corpus.
(2) Word retrieval requires not only search for grams ,
which compose the word, but also computation of
intersection over searched sets. Then it becomes slow.

Our group has made gram-based indices[11-13] for
large corpus. We report in this manuscript that our

indices do not have the above problems.
Selection of query words is very important since it

directly influences precision of retrieval. It
sometimes requires specialist's knowledge about
target area, we think. Not only automatic systems but
also interactive systems are useful for patent retrieval.
As for interactive system, fast and flexible systems
will be preferable.

2 Gram indices
2.1 Basics

An n-gram is a character sequence that has length

© 2003 National Institute of Informatics

Proceedings of the Third NTCIR Workshop

n. All grams are extracted from a document in the
corpus (Figure 1).

When n has fixed value, the index made from
grams in the corpus is called n-gram index.

Figure 1. Grams

2.2 Variable length coding by character count

The size of n-gram of Japanese 2byte characters is
2n byte if the gram is simple concatenation of the
character codes. Referencing the frequency of each
character appearance in corpus, we made grams
differently in order to reduce an index size. A
character, whose frequency is higher, is assigned
shorter code by Huffman's coding [14]. As an
exception, we assign intentionally long code against
space, parenthesis, punctuations and so on.

2.3 Variable length gram encoding in fixed
byte

We made a gram code (gram value) from
concatenation of character codes assigned as 2.2. We
fixed the length of gram value in wg (5 or 6byte). In
consequence, gram length becomes variable. Though
gram values are 8byte in main memory, they are wg
on the secondary storage. When gram values stored
in sorting order in the index, we express gram value
in less than wg byte by run length encoding [15] if
adjacent gram values are near.

3 Index making

We compute gram values as 2, document by
document. We made an index as an inverted file of
gram values. During index making, we sort gram

values. We can not put the entire corpus in main
memory at one time since the corpus of this task
exceeds main memory size. We first made batch
indices by internal sorting algorithm from subsets of
corpus, which fit in main memory. Each batch is
merged into an index afterward (Figure 2). In
previous, we used quick sort for internal sorting.
Since internal sorting dominates time, we also try
radix sort [16,17] at this task.

 Figure 2. Index and batch indices

We also made wide range map of gram values,
which are put in main memory when we search
grams.

At this task, most grams constitute 4 or 5
characters, and they are coded into wg=6 byte.

That is, a gram value has almost same length as
3-gram if not coded.

Table 1 shows the size of corpus, extracted tag
fields and two indices, which are made from abj and
dej tag field. Index size overhead against extracted
tag fields is 80.7%.

Table 1. Size of Corpus, tag fields and
indices

item size

corpus (kkh) 18.1Gbyte

<docno> tag
<abj> tag
<clj> tag
<dej> tag

69.7Mbyte
410Mbyte
1.30Gbyte
12.5Gbyte

<abj> index
<dej> index

101Mbyte
11.39Gbyte

text

[4-grams] [variable length grams]

fast∆fu
 ast∆full
 st∆full∆
 t∆full∆te
 ∆full∆te
 full∆tex
 ull∆tex
 ll∆text∆

Fast∆Full∆Text∆Retrieval∆

7
8

9

fast
 ast∆
st∆f
 t∆fu
 ∆ful
 full

ull∆
 ll∆t

….
batch indices

merge

index

(fit in main memory)

(on secondary memory)

The Third NTCIR Workshop, Sep.2001 - Oct. 2002

Table 2 shows time to make indices. The radix sort
version was 2.7 times faster than the quick sort
version.

4 Query making

We extract query words using morphological
analysis from article and supplement tags in given 31
topics (P001-31.sgml). Compound words are
segmented in words, and then all possible
combination of words are made of a compound word.

In this task, we set essential words. Plural words
can be essential in OR, considering we can set
synonyms. But we restrict them to have single idea
for simplicity. From top results file, we removed

documents which do not include any essential words.

5 Retrieval and results

Our index has tree structure, which has sorted
gram values and wide range map of them. So, not
only query words whose length is equal to gram
length, but also shorter or longer words can be
searched efficiently.

When we search a longer word, every gram in the
words is searched. Then retrieved sets of document
numbers are intersected. Each set of retrieved
document number is relatively small because long
gram works as a good filter. So the set operation is
quite fast. Moreover, since grams are searched by

gram values once they are coded, grams are searched

with 8byte integer computation, i.e. high cost
processing such as bit shifts or string comparisons are
not required.

From set of retrieved documents for query words,
we compute tf-idf and similarity using probabilistic
model [18]. Document ranking by using tag location
information is enabled since indices are made field by
field. Table 3 shows retrieval time including ranking.

We set essential words for 4 topics, i.e. P006, P016,
P029 and P030. Average precisions are improved
from 0.02 to 0.23 compared with no essential words
case.

6 Discussions

We think target specific synonym is necessary for
patent retrieval. As for essential words, it is advisable
that specialists of target areas set then since their
setting are delicate. We think interactive retrieval
systems effective for patent retrieval.

7 Conclusions

We experimented our long gram based indices at
NTCIR-3. Since our indices are based on grams, no
analyses such as morphological ones are required. We
made indices from abj and dej of NTCIR-3
documents. The total index size is 11.4Gbyte and
time to make indices is about 8.7 hours. Average
retrieval time per topic takes 73 seconds. Ranking

algorithm used is based on a traditional probability

Table 2. Time to make indices

 quick sort version radix sort version

field <abj> index <dej> index <abj> index <dej> index
time 44min 1,365min 20min 501min

total time 23.5hr 8.7hr

Table 3. Retrieval Time

 <abj> index <dej> index
retrieved words (included compound words) 151 151

time to search all words 13.7sec 122sec

search time per word (average, median) (90.7msec, 9.8msec) (808msec, 91.8msec)

retrieval time per query (inc. doc. ranking) 73sec

Proceedings of the Third NTCIR Workshop

model. We also tried to set essential words in a query.

References

[1] Gonnet, G., Baeza-Yates, R. and Snider, T., New Indices

for Text: Pat Trees, in Information Retrieval: Data

Structure & Algorithms chapter 5, Frakes, W. and

Baeza-Yates, R. Ed., pp. 66-82 (1992).

[2] Shang, H. and Merrett T., Trees for approximate string

matching, IEEE Trans. Knowledge and Data Eng., Vol. 8,

No. 4, pp. 540-547 (1996).

[3] Itoh, M., An Efficient Method for Constructing Suffix

Arrays of Large Texts, IPS Japan SIG Notes,

99-NL-129-5 (1999).

[4] Yamashita, T., Fujio M. and Matsumoto Y., Language

Independent Tools for Natural Language, Proc. 18th

ICCPOL, pp.237-240 (1999).

[5] Ferragina, P. and Grossi, R., Fast string searching in

secondary storage: Theoretical developments and

experimental results, Proc. ACM-SIAM Symposia on

Discrete Algorithms, Vol. 7, pp. 373-382 (1996).

[6] Ogawa, Y. and Iwasaki, M., A new character-based

indexing method using frequency data for Japanese

documents, In Proc. 18th ACM SIGIR Conf., pp. 121-129

(1995).

[7] Sugaya, N. et al., A full-text search system for large

Japanese text bases using n-gram indexing method, Proc.

53th Annual Convention IPS Japan, 5T-2,3 (1996).

[8] Akamine, S. and Fukushima, T., Flexible string

inversion method for high-speed full-text search, Proc.

Advanced Database Symposium '96 (1996).

[9] Matsui K., Namba, I. and Igata, N., Full-text searching

engine for large-scale data, Proc. 1997 IEICE General

Conference, D-4-6 (1997).

[10] Kikuchi, C., A fast full-text search method for

Japanese test database, Trans. IEICE, Vol. J75-D-1, No.

9, pp. 836-846 (1992).

[11] Sato, T., Fast full test search with free word using

TS-file, Proc. 19th ACM SIGIR Conf., p.342 (1996).

[12] Sato, T., Fast full test retrieval using gram based tree

structure, Proc. ICCPOL '97, Vol.~2, pp. 572--577

(1997).

[13] Sato, T. et al., Gram based full test search system and

its application, IPSJ SIG Notes, 98-DBS-114-2 (1998).

[14] Huffman, D.A., A method for the construction of

minimum-redundancy codes, Proc. IRE, Vol. 40, pp.

1098-1101 (1952).

[15] Zobel, J., Moffat, A. and Sacks-Davis, R., An efficient

indexing technique for full-text database, Proc. 18th Int.

Conf. on VLDB, 1992, pp. 352-362.

[16] Knuth, D., The Art of Computer Programming: Vol.3

Sorting and Searching, 2nd Ed., Addison-Wesley,

Reading, Mass., pp. 481-489 (1998).

[17] McIlroy, P., Engineering radix sort, Computing

Systems, Vol. 6:1, pp. 5-27 (1993).

[18] Robertson, S.E. and Walker, S., Some simple effective

approximations to the 2-Poisson model for probabilistic

weighted retrieval, Proc. 17th Int. Conf. Research and

Development in Information Retrieval, pp. 232-241

(1994).

The Third NTCIR Workshop, Sep.2001 - Oct. 2002

