
Question and Answering System based on Predicate-Argument Matching

Daisuke Kawahara Nobuhiro Kaji Sadao Kurohashi
Graduate School of Information Science and Technology, University of Tokyo

7-3-1 Hongo Bunkyo-ku, Tokyo, 113-8656, Japan
{kawahara, kaji, kuro}@kc.t.u-tokyo.ac.jp

Abstract

This paper presents a Question and Answer-
ing system based on predicate-argument matching.
Predicate-argument structures are utilized to capture
more semantics in questions than a set of keywords. In
addition to the predicate-argument matching, relation
type matching is also used to handle expressions which
are not mediated by verbs.
Keywords:predicate-argument structure, case analy-
sis, relation type.

1 Introduction

“Question and Answering” (Q&A) is a task to ob-
tain appropriate answers for given domain indepen-
dent questions written in natural language from a large
document collection. Many of existing Q&A sys-
tems are based on information retrieval techniques,
that is, keywords techniques. These systems cannot
capture semantics in questions, such as relations be-
tween words.

Our system is based mainly on matching of
predicate-argument structures. A predicate-
argument structure describes what kinds of nouns a
verb is related to. Since this is a unit of an event
or an action and captures more semantics than key-
words, it is promising that answers can be extracted
more precisely. This structure is like a logic form used
by Harabagiu et al. [1]. To extract predicate-argument
structures from sentences, we employ case and ellipsis
analysis based on a large case frame dictionary con-
structed automatically [2].

In addition to predicate-argument structures, we
userelation types which describe relations between
nouns. These are used to handle expressions which are
not mediated by verbs, namely cannot be represented
as predicate-argument structures. For instance, a rela-
tion type is used to deal with “A no imouto B wa· · ·”
‘B, A’s sister,· · ·’, which cannot be transformed into a
predicate-argument structure.

The outline of our system is illustrated in Figure
1. Answer type extractor recognizes what kind of

Question

Analyzer

Predicate-argument
structure

Relational type

newspaper
articlesText retriever

Answers

Answer candidate
sentences

Analyzer

Matching

Matching

Answer
ranking

Predicate-argument
structures

Named entity
extractor

Answer type
extractor

Relational types

Figure 1. The outline of our system

answer a question requires.Text retriever returns
sentences which match a question.Named entity
extractor recognizes named entities in the retrieved
sentences.Answer ranking module orders answers
which are output by matching of predicate-argument
structures and relation types.

2 Answer type extractor

An answer type means what kind of answer a ques-
tion requires. This is extracted from an interrogative
expression of a question. For example, if there is an
interrogative pronoundare ‘who’ in a question, an
answer type of this question is decided as “person”.
These correspondences are written by hand. We han-
dle the following six answer types: person, location,
organization, time, number, and thing. Examples of
them are shown in Table 1. When interrogative expres-
sions are“nan-nin” ‘how many persons’ or “nan-nen”
‘what year’, suffixes of answers such asnin ‘person’
or nen‘year’ are also indicated. These information is
utilized for answer ranking as described in Section 7.

© 2003 National Institute of Informatics

Proceedings of the Third NTCIR Workshop

Table 1. Examples of answer type

interrogative expression answer type
dare ‘who’ person
doko‘where’ location, organization
itsu ‘when’ time
donokurai‘how much’ number
nan ‘what’ thing
nan-nin‘how many persons’ person (suffix=nin)
nan-nen‘what year’ time (suffix=nen)

3 Text retriever

We employ a text retriever which is utilized byDi-
alog Navigator[3]. The text retriever accepts a ques-
tion, then returns articles in order of matching score
between the question and each article. This score be-
comes high when an article preserves syntactic depen-
dencies in the question. For instance, when there is
a dependency “teiri wo · · · toku” ‘resolve · · · the the-
orem’ in a question, an article that has the same de-
pendency is ranked higher than an article that has both
teiri ‘theorem’ andtoku‘resolve’ separately. The max-
imum number of returned articles is set to 20 because
of temporal restriction. This threshold was determined
by a preliminary experiment not to deteriorate the ac-
curacy of the system.

From returned articles, our text retriever extracts
paragraphs which include one of the content words
in the question. We call each sentence of these para-
graphs ananswer candidate sentence.

4 Named entity extractor

We apply named entity extraction to answer candi-
date sentences. Named entities in each sentence are
classified into person, location, organization, time or
number. Our named entity extractor is based on a
handmade suffix dictionary in which there are rules
of correspondence between suffixes and named entity
classes. For example, “· · · daitoryo” ‘ · · · president’
is recognized as person, and “· · · kawa” ‘ · · · river’ is
recognized as location.

Named entity information is used in the rules of re-
lation types as shown in Section 6, and in the matching
with answer types in the answer ranking described in
Section 7.

5 Predicate-argument structures

This section describes how to extract predicate-
argument structures of a question and its answer can-
didate sentences, and explains the matching method of
them.

5.1 Extraction of predicate-argument struc-
tures

We apply case and ellipsis analysis[2] to a ques-
tion and its answer candidate sentences to extract
predicate-argument structures. Let us consider the fol-
lowing answer candidate sentence.

Fermatno saisyu teiri wo toita nowaAndrew
Wilesda.

(1)

(Andrew Wiles resolved the Fermat’s last the-
orem.)

The result of case and ellipsis analysis to this sentence
is the following predicate-argument structure oftoku
‘resolve’.

Andrew Wiles:ga teiri:wo toku (2)

(Andrew Wiles:nom theorem:acc resolve)

If there are more than one verb in a answer candidate
sentence, predicate-argument structures are extracted
from all these verbs without modal verbs.

There are many sentences that express the same
meaning. For example, the following sentences have
the same meaning as the above sentence.

Fermatno saisyu teiri waAndrew Wiles ni
tokareta. (passive form of (1))

Fermatno saisyu teiri wo toita jinbutsu waAn-
drew Wilesda.

Andrew Wilesga Fermatno saisyu teiri wo
toita.

(Andrew Wiles resolved the Fermat’s last theorem.)

Eachtoku in these sentences has the same predicate-
argument structure shown in (2), because our case and
ellipsis analyzer normalizes these expressions.

In case of a question, predicate-argument structures
can be extracted similarly.

Fermat no saisyu teiri wo toita nowa dare
desuka.

(3)

(Who resolved the Fermat’s last theorem?)

The result of case and ellipsis analysis to this sentence
is the following predicate-argument structure oftoku
‘resolve’.

X:ga teiri:wo toku (4)

(X:nom theorem:acc resolve)

An interrogative pronoun in a question is replaced by
“X”. In this question,dare ‘who’ is replaced by “X”.
“X” is a wildcard, which corresponds with any ex-
pressions in the matching of predicate-argument struc-
tures. If there are more than one verb in a question,
only the final verb without modal verbs is handled.

The Third NTCIR Workshop, Sep.2001 - Oct. 2002

Table 2. Examples of relation types
example relation type
Natsume Souseki“Sanshiro” “Natsume Souseki”:author Sanshiro:writing
A no hahaoya, B A:child B:mother
Americadaitoryo noClinton America:organization daitoryo:position Clinton:person
Bill Clinton (52) “Bill Clinton”:person 52:age
Tokyo daigaku(Bunkyo-ku) “Tokyo daigaku”:organization Bunkyo-ku:location
uridashi kakaku no370 yen “uridashi kakaku”:price name “370 yen”:price
Conbini, Lawson Conbini:appositive Lawson:appositive
muteiden dengensouchi(UPS) “muteiden dengensouchi”:full name UPS:abbreviation

5.2 Matching of predicate-argument struc-
tures

We match a predicate-argument structure of a
question with those of answer candidate sentences.
Answers are extracted from the pairs of predicate-
argument structures which have at least one same case
component. “X”, replaced by an interrogative pro-
noun, can be correspond to any case component whose
case marker is the same as that of “X”. Answers are ex-
tracted from the case components corresponding with
“X”.

When answering the question (3), the pair of (2)
and (4) has the same verbtoku ‘resolve’ and the same
case componentteiri:wo ‘theorem:acc’, and “Andrew
Wiles:ga” corresponds with “X:ga”. Consequently,
“Andrew Wiles” is extracted as an answer.

If the verb of (1) issyoumei-suru‘prove’, the fol-
lowing predicate-argument structure is acquired.

Andrew Wiles:ga teiri:wo syoumei-suru (5)

(Andrew Wiles:nom theorem:acc prove)

In this case, “Andrew Wiles” can be an answer, be-
cause (4) and (5) have the same case componentteiri,
though their verbs are different.

6 Relation types

This section describes how to extract relation types
of a question and its answer candidate sentences, then
shows the matching method of them.

6.1 Extraction of relation types

We apply pattern matching approach to a question
and its answer candidate sentences to extract relation
types. We made 120 matching patterns by hand us-
ing a thesaurus and named entity classes. Examples of
relation types are shown in Table 2.

Let us consider the following answer candidate sen-
tence.

· · · niwa, Natsume Souseki“Sanshiro” ga aru. (6)

(There isNatsume Souseki“Sanshiro” ...)

The pattern matching produces the following relation
type.

Natsume Souseki:author Sanshiro:writing (7)

We call the components that constitute relation types,
such as “Natsume Souseki:author”, relation compo-
nents.

The pattern matched by the above example is as fol-
lows.

< person>
1
“.* 2” → 1:author 2:writing

where <person>is a named entity class, and .*
matches any expressions.

We can extract a relation type from a question sim-
ilarly.

Natsume Souseki no meisaku wa nan desuka.(8)

(What are the masterpieces ofNatsume Souseki?)

From this question, the following relation type is ex-
tracted.

Natsume Souseki:author X:writing (9)

In the same way as the predicate-argument structures,
an interrogative pronoun is replaced by “X”. In this
sentence, “nan” ‘what’ is replaced by “X”. The pattern
matched by this example is as follows.

< person>
1

no [work] wa*2 da.

→ 1:author 2:writing

where[work] means a semantic node in a thesaurus.

6.2 Matching of relation types

We match a relation type of a question with those
of answer candidate sentences. Answers are extracted
from the pairs of relation types which have more than
one same relation component which does not include
“X”. “X” is handled in the same way as matching of
predicate-argument structures. Answers are extracted
from the relation components corresponding with “X”.

Proceedings of the Third NTCIR Workshop

When answering the question (8), the pairs of (7)
and (9) have the same relation component “Natsume
Souseki:author”, and “Sanshiro:writing” corresponds
with “X:writing”. Consequently, “Sanshiro” is ex-
tracted as an answer.

7 Answer ranking

Matching of predicate-argument structures and re-
lation types produces several answers. It is necessary
to filter and order these answers to make the final an-
swers for each task of Question and Answering Chal-
lenge.

At first, we check the consistency between an an-
swer type and named entity classes of answers. For
instance, if an answer type is<person>, answers
which are not tagged as<person> by the named en-
tity extractor are filtered out. Only if an answer type
is <thing>, the condition is different, and answers
tagged as<person>, <time>, or <number> are fil-
tered out.

Secondly, answers are ordered by the number of
corresponding case and relation components in the
matching. The more the number of corresponding
components are, the higher the answer is ranked.
When verbs are different in the matching of predicate-
argument structures, an answer extracted from this
matching is ranked lower.

Note that filtered out answers are added again to the
end of the answers of only task 1, because they do not
deteriorate the score of task 1.

8 Result of the formal run and discussion

Our system participated in task 1 and task 2 of the
formal run of Question and Answering Challenge. The
score of task 1 was 0.155 in MRR, and the score of task
2 was 0.123 in average of F-measure (AFM).

Our scores are not so good. This is because the
kinds of relation types and the patterns of each relation
type are not sufficient. We should elaborate these by
investigating more Q&A examples.

On the other hand, the accuracy of the matching
of predicate-argument structures is not bad. One rea-
son is that the text retriever can retrieve sentences in-
cluding answers very precisely. However, there is still
room for improvement. For example, the following
question could not be resolved by our system.

Mos Burgerwo sougyou-shita no wa dare
desuka.

(10)

(Who founded Mos Burger, the hamburger
shop?)

From this question, the following predicate-
argument structure was extracted.

X:ga Mos Burger:wo sougyou-suru (11)

(X:nom Mos Burger:acc begin)

The following answer candidate sentence, which has
the answer (Sakurada Satoshi), could be retrieved.

Mos Burgerno sougyou-sya de, 60 sai de
nakunatta Sakurada Satoshi· · · (12)

(Sakurada Satoshi, who is the beginner of
Mos Burger and died when he was 60 years
old, · · ·)

From this sentence, no predicate-argument structure of
sougyou-suru‘begin’ was extracted, becausesougyou
is a part of the noun phrase “sougyou-sya” ‘beginner’.
We must extend our system to handle such nominals
as verbs.

9 Conclusion

In this paper, we presented a Q&A system based
on predicate-argument matching. In addition to the
predicate-argument matching, relation type matching
is also utilized. Our system participated in Question
and Answering Challenge, and our scores were not
so good. For future work, we will investigate more
Q&A examples and elaborate the patterns of relation
types, and refine and extend the matching of predicate-
argument structures.

References

[1] S. M. Harabagiu, M. A. Pasca, and S. J. Maiorano. Ex-
periments with open-domain textual question answer-
ing. In Proceedings of the 18th International Confer-
ence on Computational Linguistics, 2000.

[2] D. Kawahara and S. Kurohashi. Fertilization of case
frame dictionary for robust Japanese case analysis. In
Proceedings of the 19th International Conference on
Computational Linguistics, 2002.

[3] Y. Kiyota, S. Kurohashi, and F. Kido. ”Dialog Naviga-
tor”: A question answering system based on large text
knowledge base. InProceedings of the 19th Interna-
tional Conference on Computational Linguistics, 2002.

The Third NTCIR Workshop, Sep.2001 - Oct. 2002

