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Abstract 
 
This paper describes our Question Answering system 
participated in QAC Task1 of NTCIR3 and reports 
the results with some observations. Through 
analyzing the previous TREC QA data, we defined 
passage and developed passage selection method 
suitable for Question Answering. Using Lexico-
Semantic Patterns (LSP), we identify answer type of 
a question and detect answer candidates without any 
deep linguistic analysis of the texts. Answer 
candidates are ranked by passage scores and 
distances between answer candidates and matched 
terms. As a result of better engineering, our system 
showed excellent performance when evaluated by 
mean reciprocal rank (MRR) in NTCIR 3. 
Keywords: question answering, passage selection, 
lexico-semantic patterns 
 
 
1. Introduction 
 

Question Answering (QA) is a task to retrieve 
answers rather than documents in response to a 
question and an effort to come nearer to true 
information retrieval. Since the test collection was 
prepared through TREC-8 [16], many researches 
were progressed vigorously. We also jumped into this 
task, participated in the last TREC QA task (TREC-
10) and achieved relatively good performance [10]. 
Encouraged by the result, we decided to participate in 
the QAC task of NTCIR 3 
(http://research.nii.ac.jp/ntcir/workshop/qac/cfp-
en.html) and apply the similar but more advanced 
techniques to Japanese Question Answering. 

Almost all QA systems use document retrieval 
systems and even passage retrieval techniques to 
reduce search space to small document snippets. 
Passage retrieval techniques were originally 
introduced to improve the precision of document 
retrieval systems. However, in the view of question 
answering, passage retrieval may show different 
characteristics. Usually the goal of question 
answering task is to find out an exact answer (or 
answer string) to a question, whereas the goal of 
document retrieval task is to find out as many 
relevant documents as possible to a requested topic. 
Relevance information to a topic tends to occur 
across several sentences in a document, but query 

terms of question and its answer tend to occur within 
one sentence or two. Thus we need to define new 
passage and develop a method suitable for question 
answering systems 

One of main differences between the previous 
TREC QA tasks and NTCIR QAC task is exact 
answer constraint on returned answers. Returned 
answers containing any dummy word will be judged 
as incorrect. This requires methods that can 
determine the answer type of a question and detect 
exact answers belonging to the answer type more 
accurately. These are achieved by using Lexico-
Semantic Patterns in our system. 

The remainder of this paper is organized as 
follows. In section 2, we look into some previous 
researches on Question Answering. We explain how 
passages are defined and selected for further 
processing in section 3. In section 4, we describe 
what Lexico-Semantic Patterns are, how answer type 
of a question is determined, and how answer 
candidates are detected using these Lexico-Semantic 
Patterns and some scores. 
 
2. Previous Work 
 

Many question-answering systems have been 
developed since TREC QA test collection was 
constructed. They employed various techniques to 
answer a question from the test collection. We will 
review some of them in this section. 

Identification of answer type of a question was 
used to constraint semantic type of potential answers 
and can narrow search space considerably. Answer 
type was defined based on ontology such as WordNet 
[7] or Named Entity labels used in MUC-7 [8]. [7] 
identified answer type of a question through parsing, 
while [8] identified through learning several features 
based on Maximum Entropy model. 

Another technique to narrow search space for 
potential answers is passage retrieval (or selection). 
Passage retrieval techniques were initially developed 
for high precision of information retrieval systems 
[2][6][13][19][21] and also used for selecting 
passage that might contain potential answers 
[3][7][11]. Many QA systems defined their own 
passage (sentence, paragraph, topical segment, etc) 
and developed various ranking measures. However, it 
was not yet evaluated which passage definition and 
ranking method is most effective for Question 
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Answering systems. 
To detect answer candidates to a question, many 

systems utilized Named Entity recognition 
techniques. This was achieved by pattern matching 
such as regular expression [3] or external NE taggers 
[7]. To justify answer candidates, [5] employed 
abductive reasoning with deep analyses of texts, 
while [7][14] used only surface patterns and showed 
good performance in the latest TREC QA evaluation. 
 
3. Query-based Answer Passage 
Selection 
 

Most question answering systems utilize existing 
document retrieval systems to reduce search space to 
several documents. However a document is usually 
not suitable for detecting answer candidates within 
itself because it is too long and contains too much 
extra information and various topics. By analyzing 
questions and their answers used in the past TREC 
QA tasks, we could find that an answer occurs 
comparatively near to keywords matched to a query 
in a document. This means that we can focus on only 
short part of a document rather than the whole to 
extract answer candidates and thereby considerably 
reduce the computational load. Considering this fact 
we employ passage selection method after retrieving 
documents through a probabilistic document retrieval 
system, POSNIR[10], like several previous 
researches ([3][7][11]). 
 
3.1 Definition of a Passage 
 

Passage selection or passage retrieval techniques 
were originally used to improve the precision, 
especially top-level precision, of information 
retrieval systems [9]. These techniques can be 
divided into two different approaches: static and 
dynamic passage retrieval. In static approach, each 
document is segmented into several passages in 
indexing time and each passage, not document, is 
indexed. Therefore, a retrieved passage is always 
definite regardless of a request [6][13][19][21]. 

 However, this approach may often degrade the 
performance to some queries since it is difficult to 
segment a document into passages equally suitable to 
all the queries. In contrast to the static approach, the 
dynamic approach determines the passages with 
fixed or variable length in response to requests [2][9]. 
This method can get passages more suitable to each 
query but needs an algorithm to efficiently determine 
them since all possible passages must be computed in 
retrieval time. According to Kaszkiel [9], we know 
that the dynamic approach gives substantial 
improvements in effectiveness than the static and so 
can be more suitable for question answering. Passage 
was defined in several ways in previous works: 
sections (or paragraphs) [19][13], pages (which are 
adjacent paragraphs within limited bytes)[21], tiles 
(which are adjacent sentences divided by topic 
shift)[6], fixed-length windows[2] and variable-
length windows[9]. Sections, pages and tiles are 

static passages, whereas fixed-length and variable-
length windows are dynamic. Kaszkiel compared 
these various passages through experiments and 
showed that passages based on windows were more 
effective and especially 150 to 350-word passages 
had good performance in retrieval precision. 

However, in the view of question answering, 
passage retrieval may show different characteristics. 
We analyzed 492 questions and evaluation results of 
the runs submitted by each participant group of 
TREC-10 [18] to investigate the effect of passage 
retrieval when it was applied to question answering. 
Using answer patterns and judgment information 
provided by NIST, we gathered instances of each 
answer passage which consists of 11 adjacent 
sentences: one sentence containing an answer string 
and the previous and the next 10 adjacent sentences. 
And then we investigate the distribution of query 
terms in each answer passage. 1  Throughout this 
analysis, we found that about 80% of query terms of 
each question occurred on average within 50-word 
window including answer string in its center and 
within 3-sentence window including answer string in 
the middle sentence. This is very small relatively to 
the window size suggested by Kaszkiel[9] and might 
be due to the difference between the two tasks. 
Usually the goal of document retrieval task is to find 
out as many relevant documents as possible to a 
requested topic, but the goal of question answering 
task is to find out an exact answer (or answer string) 
to a question. Relevance information to a topic tends 
to occur across several sentences in a document, but 
query terms of question and its answer tend to occur 
within one sentence or two. 

According to this preliminary examination, we 
defined a passage as consecutive three sentences for 
QAC task. We prefer sentence window to word 
window to prevent a possible answer from being cut 
off by window boundary even though some query 
terms and the possible answer co-occur in the same 
sentence. 
 
3.2 Passage Scoring 
 

We developed a scoring measure to rank each 
passage and an algorithm to compute efficiently 
scores of all possible passages. We can first think of 
the following assumptions for scoring measure of the 
passages: 

! The more query terms a passage contains, 
the more probably the passage also contains 
an answer to the question. 

! Duplication of terms in a passage or a 
question is not important and can be ignored. 

! Document-specific terms are more 
important than general terms. 

                                            
1 Stop words and optional terms in a query were ignored and 
lemmatization was applied to each query term except the 
superlative. For example, in a question, “What is the largest city in 
the U.S.?”, ‘city’ is optional and therefore was ignored. 
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The first and second assumptions can be measured by 
the number of unique query terms occurred in a 
passage divided by the number of unique query terms 
and the third can be expressed by using inverse 
document frequency. Let qtuc be count of unique 
query terms in a question, ptuc be count of unique 
passage terms matched with the query terms, ptfi be 
frequency of ith query term in a passage (we call this 
passage term frequency) and idfi be inverse document 
frequency of ith query term. Then the score of a 
passage can be calculated using expression (1). 

∑
=

×××−+×=
qtuc

i
ii idfptf

qtucqtuc

ptuc
PScore

1

2000
)1( αα  (1) 

, where α is a constant. 
 
3.3 Efficient Passage Selection 
 

Passage selection algorithm must cover all 
possible passages from each retrieved document to 
select most probable passages. If a document consists 
of five sentences (S1, S2, S3, S4, S5), there are three 
possible passages (P1={S1, S2, S3}, P2={S2, S3, S4}, 
P3={S3, S4, S5}). Then the algorithm must calculate 
the score of each passage P1, P2 and P3 respectively 
by expression (1). Since qtuc and idfi are constant 
regardless of passages, it only needs to count ptuc 
and ptfi. These can be easily obtained from term 
position information (TPI) which is a database that 
contains the position (i.e. jth token of ith sentence) of 
each index term occurred in each document and 
which is constructed in IR indexing time. When a 
document is retrieved, we can count the occurrences 
of each query term in each sentence and then count 
the occurrences of each query term in each passage 
and calculate the score of each passage. 

We rank the passages according to the scores of 
them and select top N passages for further processing. 

It is allowed to select more than one passage from 
a document, but only one passage is allowed to be 
selected among three consecutive and overlapped 
passages to prevent one sentence from being 
processed more than once in the next module. In the 
above example, if query terms occur in only S3, the 
three passages, P1, P2 and P3 have same scores. In 
this case, we prefer P2 to others since answers tend to 
occur near the query terms. 

After selecting top passages, answer candidates 
are extracted from them through Lexico-Semantic 
Pattern matching and most probable answers are 
returned as a response to the input question. 
 
4. Question Answering using Lexico-
Semantic Patterns 
 

Various Question Answering systems and 
techniques have been developed and tested through 
recent TREC QA tracks on the English test collection 
[15][17][18]. Some systems like [5] showed good 
performance through complicated analyses of texts 
such as parsing and theorem proving while some 
systems like [14] obtained surprising results using 

only simple surface patterns extensively and showed 
the remarkable power of such lexical patterns by 
exploiting redundancy of the corpus. 

The first Question Answering Challenge (QAC) 
task in NTCIR3 has a goal similar to that of the 
previous TREC QA tasks (that is, uses fact-based 
questions that require short answers) but requires the 
exact answer to each question rather than fixed-byte 
answer strings (TREC2002 QA track also adopts this 
policy). This exact answer constraint may degrade 
the performance of QA systems since a returned 
answer is judged as incorrect if it contains any 
dummy words. For example, a returned answer “ＤＤ
Ｉ・ＫＤＤ・ＩＤＯ” to a question “２０００年１０月１日に合併
することが決まった通信三社はどこですか。(What are 
three communication companies which were decided 
to merge in Oct. 1, 2000?)” is incorrect though each 
‘ＤＤＩ’, ‘ＫＤＤ’ and ‘ＩＤＯ’ is judged as correct. 
Therefore we need a technique to exactly extract the 
only entities that can be answers and well-engineered 
Lexico-Semantic Patterns (LSP) are developed for 
such purposes. 

 
Instance 

LSP 
…名作/NC は/EH 何/NRC です/U か/EM 
(What is the masterpiece …) 

(%work)(は)(何)(です)(か) 

会長/NC は/EH 誰/NRC です/U か/EM 
(Who is the president …) 

(@position)(は)(誰)(です)(か) 

３０/NN 歳/NUN 
(30 year-old) 
(@number)(@unit_age) 
夏目 /NPPS 漱石 /NPPG の /EY 「 /SO こ ころ
/NC 」/SL 
(Souseki Natsume’s ‘Kokoro’) 
(@person)(の)(@bracket) 
バイ/NC スフ/NC ロク/NC さん/NUP 
(Mr. Baisuhuroku) 

(@np)(NUP) 

Table 1. Example of Lexico-Semantic Patterns2 

4.1 Lexico-Semantic Patterns 
 

In this subsection, we describe Lexico-Semantic 
Patterns (LSP), which is used to determine the 
answer type of an input question and also to extract 
answer candidates from selected passages. 

LSP is a pattern that is expressed by lexical 
entries, part-of-speeches (POS), syntactic categories 
and semantic categories. Unlike surface patterns, 
which are expressed literally using only lexical 
entries, LSP has more flexibility, can reduce the 
number of necessary patterns and gives the 
expression power to handle the complex syntactic 

                                            
2 Each instance was attached with POS tag, and the parentheses in 
LSP were inserted only to separate each component of the LSP. 
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and semantic phenomena in human language since 
each lexical can be generalized by POS, syntactic or 
semantic category. 

Table 1 shows some examples of LSP’s that can 
be constructed from instances. ‘%work’, ‘@position’, 
‘@unit_age’ and ‘@person’ are semantic categories 
of ‘名作’, ‘会長’, ‘歳’ and ‘夏目漱石’, respectively. Of 
course each number expression is generalized to 
‘@number’. ‘@bracket’ and ‘@np’ are syntactically 
generalized from ‘ 「こころ」 ’ and ‘バイスフロク ’, 
respectively. ‘NUP’ is a POS tag of ‘さん ’ and 
represents a suffix following person’s name. 

We use POSTAG/J, our part-of-speech (POS) 
tagger for Japanese, to generalize each lexical entry 
to its POS. For syntactic category such as ‘@np’ and 
‘@vp’, we implemented simple verb and noun phrase 
chunker. ‘@bracket’ and ‘@parenthesis’ are made by 
checking the boundaries surrounded by brackets and 
parentheses within small window and is very useful 
for extracting titles of books, movies and TV 
programs and acronyms of entities, respectively. To 
generalize a lexical entry to a semantic category, we 
defined 68 semantic categories by referring the 
previous TREC data and gathered about 250,000 
instances belonging to each semantic category from 
lots of web sites and dictionaries. Semantic 
categories include person, location, school, city, 
company, bird, drug, etc. 
 
4.2 Determining Answer Type using LSP 
 

 It is important for a QA system to predict what 
type of answer the question requires (i.e. answer 
type): person name, location, organization, or any 
others since it can fairly reduce the number of answer 
candidates. Referring to the previous TREC QA 
questions, we defined 62 answer types and developed 
a method that classifies questions into the answer 
types using the LSP’s. 

Usually an interrogative in a question is an 
important factor but it is not enough to determine the 
answer type of a question because it also can has 
sense ambiguities like other words. For example, ‘ど
こ’ indicates a ‘location’ in a question, “東京ディズニ
ー ラ ン ド は ど こ に あ り ま すか 。 (Where is Tokyo 

Disneyland?)” while it indicates a ‘company’ in 
another question, “日本サブウェイはどこの会社の子会
社ですか 。 (Nihon Subway is which company’s 
subsidiary?)”. This means that LSP’s for classifying 
questions must include its surrounding contexts as 
well as an interrogative itself. ‘どこにあり’ and ‘どこの
会社’ are key phrases that can tell the answer type of 
two questions and expressed in LSP grammar for ‘ど
こ’ question as follows: 

(どこ)(に)(ある) " 1|3|location 
(どこ)(の)(%company) " 1|3|company 

‘%company’ is a semantic class to represent 
synonyms of ‘会社’. The first number in the right-
hand side of arrow ("), divided by vertical bar, 
indicates the location of an interrogative (‘どこ’ in this 
case) in the LSP of the left-hand side and the second 
number indicates number of components of the LSP. 
The third is an answer type. In other words, the 
above grammars represent that the LSP consists of 
three components and the first one is an interrogative 
and if some part of a question matches with the LSP, 
then the answer type of the question is ‘location’ (or 
‘company’). If more than one answer type is possible 
to each LSP then all possible answer types can be 
enumerated with a separating vertical bar. Table 2 
shows some more examples of LSP grammars for 
determining answer types with sample questions. 

Determined answer type can be extended to 
several subsumed answer types. For example, 
‘location’ is extended to “location, state, city, country, 
etc” before detecting answer candidates. If a question 
is not assigned to any predefined answer type, we 
assign ‘language_unit’ to the question. 
 
4.3 Detecting Answer Candidates using 
LSP 
 

Unlike the previous TREC QA tasks, we have to 
return only exact answers in the QAC task. This 
makes answer detection module more important 
since an answer string involving any dummy words 
will be judged as incorrect. 

LSP is used for extracting answer candidates 
from text as well as classifying questions. Once an 
answer type of a question is determined, what we 

Interrogatives Sample question Grammar 

何/なん/なに 
(what/which) 

“夏目漱石の名作は何ですか。” 
(What is the masterpiece of Souseki Natsume?) 
“千葉県の県庁所在地は何市ですか。” 
(Which city is the provincial office of Chiba 
located?) 

(%work)(は)(何)(です) 
 " 3|4|movie|book|music 

(は)(何)(%city)(です) 
   " 2|4|city 

誰/だれ/どなた 
(who) 

“大学審議会の会長は誰ですか。” 
(Who is the president of university council?) 

(@position)(は)(誰)(です) 
" 3|4|person 

どこ/何処/何所, どちら/どっち
(where/which direction) 

"タージ・マハールはどこにありますか。" 
(Where is Taj Mahal?) 

(どこ)(に)(ある) 
   " 2|3|location 

いつ 
(when) 

“米ソの冷戦が終わったのはいつですか。” 
(When was the Cold War between USA and 
Russia terminated?) 

(は)(いつ) 
   " 2|2|date 

Table 2. Examples of LSP grammars for classifying questions into answer types 
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have to do is to find out entities belonging to the 
answer type within passages selected in the previous 
step. Named Entity (NE) tagger was used for this 
purpose in many QA systems and is substituted by 
LSP grammars in our system. 

From instances belonging to each answer type, 
gathered from texts, we can construct LSP grammars 
for extracting answer candidates. For example, in a 
text snippet, “村上雅則さん（５３）”, we can extract ‘村
上雅則 ’ and ‘５３ ’ as ‘person name’ and ‘age’, 
respectively, using following LSP grammars: 

(NPPS)(NPPG)(さん)  " person|1|2|3|1.0 
(NPPS)(NPPG)(さん)(（)(@number)(）) " 
age|5|5|6|1.0 

The first grammar means that the LSP is composed 
of three components and if it matches with a text 
snippet, then corresponding parts to between the first 
component and the second including boundaries is 
extracted as ‘person name’ with weight 1.0. Weight 
value indicates the precision of the pattern and can be 
obtained by counting correct instances among ones 
extracted by applying the pattern to test collection. 
Table 3 shows some more examples of LSP 
grammars for detecting answer candidates. 

If a question is not assigned to any predefined 
answer type and so assigned to ‘language_unit’, any 
noun phrase can be considered as answer candidates, 
but we prefer proper noun or bracketed phrase to 
others. 

Answer detection must be applied to a question 
itself since it also can contain entities belonging to its 
answer type. An answer candidate to a question may 
be filtered out if it occurs in the question itself. 
 
4.4 Answer Filtering and Scoring 
 

Before scoring each answer candidates, they are 
filtered out by the following assumptions: 

! A word itself occurring in the question 
cannot be an answer. 

! An answer candidate cannot be a correct 
answer if it also occurred in the question 

! An answer candidate cannot be a correct 
answer if it came from the phrase presenting 
the origin of the news article. This heuristic 
is specific to the test collection. 

Some heuristics specific to each answer type are 
also applied for filtering. For example, the number 
representing a year usually consists of 2 to 4 digits. 
One character person name is also filtered out. 

If date constraint was specified in a question, e.g., 
“９９年７月の完全失業率は何パーセントでしたか。(What 
percent was the whole-unemployment rate in July, 
99?)”, then answer passage should satisfy it too. That 
is, the date should occur in the answer passage or be 
same with the date of document from which the 
answer passage came. 

Some questions contain a word that can become a 
clue for finding answers. For example, in a question, 
“チュニジアの人口は何人ですか。(How many people 
are there in Chunizia?)”, a word, ‘人’, is a clue for 
finding an answer, “９０９万人 (909 ten thousand 
people)”. This clue word can be useful for filtering 
answer candidates especially for ‘count’ type answers. 

The score of each extracted answer candidate is 
based on the number of unique terms matched in the 
passage and distances from each matched term. This 
assumes that a correct answer to a question will occur 
probably near terms matched with the question. This 
assumption is not necessarily true but makes a good 
hit for many questions of the previous TREC QA 
tasks. 

The score of an answer candidate is calculated 
using the following four features and linearly 
combined with the passage score (expression (2)) 

! LSPwgt : the weight of the LSP’s used to 
extract the answer candidate. This reflects 
the confidence of LSP’s applied to extract 
the answer candidate. 

! qtuc : the count of unique query terms. 

! ptuc : the count of unique terms matched 
with query terms in a selected passage. The 
ratio of ptuc to qtuc reflects the weight of a 
passage from which the answer candidate 
was extracted. 

! avgdist : the average distance between the 
answer candidate and each matched term. 

 

)(
)1(             

avgdistptuc

ptuc

qtuc

ptuc
LSPwgt

PScoreAScore

+
×××−

+×=

β

β
(2) 

Instances Grammars 
３０歳 (30 year-old) 
夏目房之介さん（４７） 
 (Mr. Husakorekai Natsume (47)) 

(@number)(@unit_age)  " age|1|2|2|1.0 
(@person)(NUP)(（)(@number)(）) " age|4|4|5|1.0 

夏目漱石の「こころ」 (Natsume’s ‘Kokoro’) 
…主演の「Ｌ．Ａ．コンフィデンシャル」 
 (‘LA Confidential’ starring …) 

(@person)(の)(@bracket)  " book|3|3|3|0.85 
(主演)(の)(@bracket)  " movie|3|3|3|0.9 

バイスフロクさん (Mr. Baisuhuroku) 
村上雅則投手 (A pitcher Masanori Murakami) 

(@np)(NUP) " person|1|1|2|0.85 
(NPPS)(NPPG)(@position)  " person|1|2|3|1.0 

スカイマークエアラインズ（本社・東京） 
(Sky Mark Airlines (head office, Tokyo)) (K)(（)(本社)(・)  " company|1|1|4|0.9 

Table 3. Sample grammars for extracting answer candidates 

Proceedings of the Third NTCIR Workshop 

 



, where β is a constant, PScore is the score of a 
passage, from which the answer candidate was 
extracted. 

When ranking answer candidates, we check any 
duplicates and remove them out. For person name, 
we also check partial duplicates between family 
name and full name. 
 
5. Experiments in NTCIR3 
 

We participated in the QAC Task1 of NTCIR 3. 
The test collection was composed of 230,000 
documents (about 280MB) from 98-99 Mainichi 
Newspaper articles and relatively small compared to 
the TREC test collection (about 3GB). 

To test each participating system, 200 factoid 
questions were provided by National Institute of 
Informatics (NII) and each participant returned top 
five exact answer candidates to each question. This 
exact answer constraint is one of the main differences 
from the TREC-8,9,10. Among the questions, five 
questions were excluded from evaluation since they 
had no answer in the test collection. 

Returned answers were judged by NII assessors 
and evaluated by mean reciprocal rank. In this 
section we report our system’s performance 
evaluated from NII and performances of each module 
in our system. 
 
5.1 Experimental Environment 
 

We indexed the test collection using our 
document retrieval system for Japanese, POSNIR/J, 
which maintains each document with POS tag 
provided by POSTAG/J, our POS tagger for Japanese, 
and term position information (TPI) of each indexed 
term. 

We then manually constructed LSP grammars for 
answer type identification and answer candidate 
detection from the extra web data and the texts of the 
test collection. 

Our system used top 1000 documents retrieved 
by POSNIR/J to select answer passages and top 500 
passages to detect answer candidates and returned 
exact answer candidates in 8.74 seconds per question 
averagely on a PC server with P-III 650MHz dual 
CPUs. 
 
5.2 Effect of Document Retrieval 
 

Based on the answer file provided by NII, we 
evaluated result of our document retrieval system. 
We constructed relevant document list for each 
question from the answer file and ran the evaluation 
tool, trec_eval, on the retrieved document list. The 
evaluation result is shown in Table 4. 

Unlike general document retrieval, just one 
relevant document is enough to answer to a question. 
So we inspected rank of the first relevant document 
to each question. All questions among 195 questions 
except only one (q#24) had at least one relevant 
document within top 500 retrieved documents and 

93.3% had at least one within top 100. 
 

Top N docs Precision 
5 docs 0.1672 

10 docs 0.1267 
15 docs 0.1002 
20 docs 0.0874 
30 docs 0.0697 

100 docs 0.0328 
200 docs 0.0206 
500 docs 0.0096 

1000 docs 0.0053 
Retrieved 192667 
Relevant 1123 
Rel_ret 1037 

Table 4. Performance of document retrieval 
 

Top N 
passages 

Rate of 
questions 

5 psgs 0.7897 
10 psgs 0.8513 
15 psgs 0.8718 
20 psgs 0.8923 
30 psgs 0.8974 
50 psgs 0.9123 

100 psgs 0.9179 
200 psgs 0.9385 
500 psgs 0.9487 

Table 5. Performance of passage selection 
 
5.3 Effect of Passage Selection 
 

We also evaluated the performance of passage 
selection module. Based on (answer instance, 
document id) pairs of the answer file, we judged a 
selected passage as correct if it contains an answer 
instance and its document id is same with document 
id of the answer instance. Table 5 shows the rate of 
questions whose answer was included within top N 
selected passages. Only 10 questions had no answers 
within top 500 selected passages and 89.2% of the 
questions had an answer within top 20 selected 
passages. For two questions (q#78 and q#82) that had 
no answer passages within top 20, our system 
returned correct answers at top rank. As evaluated by 
mean reciprocal rank (MRR) of the first relevant 
passage, our system got 0.6560. 
 
5.4 Performance of Question Answering 
 

Finally, returned answers of our system were 
evaluated. Table 6 shows the performance of our 
system by the scoring tool (version 1.40) provided by 
NII. Five among 200 questions were excluded from 
the computation of mean reciprocal rank (MRR) as 
they have no answers in the test collection. 

Some questions have more than one answer from 
more than one document. There are 288 correct 
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answers to 200 questions in the test collection. Our 
system returned 994 answer candidates to 200 
questions and, among them, 220 responses were 
judged as correct and 183 were distinct answers. 
Recall and precision were calculated from the 
numbers of answers, outputs and correct outputs. F-
measure was calculated by F-measure = (2 * Recall * 
Precision) / (Recall + Precision). 

In MRR, the standard evaluation criteria in QAC 
Task1, our system recorded 0.608, which is best 
performance among 15 participating systems 
(average 0.303). Our system returned correct answers 
within top five for 149 questions and at the first rank 
for 98 questions. Table 7 shows the number of 
questions according to the rank of the first correct 
answer and Table 8 shows the performance of our 
system according to each answer type. Our system 
was successful to return the correct answers to about 
half of the questions at top rank, and the deviation of 
performance according to answer type is not very 
large. 

Compared to the performance (MRR=0.320) we 
made at TREC-10, this performance is very high 
even though the exact answer constraint was given. 
This may be because the test collection is very small 
and the ‘no answer’ questions were excluded in 
NTCIR 3. Another reason can be that we used our 
own document retrieval system this time. In TREC-
10, we used document list provided by NIST since 
we couldn’t finish indexing of the test collection 
within the given amount of time. However, after the 
evaluation, we finished indexing and found that the 
results of our own document retrieval system are 
much better than the document lists given by NIST. 

 
Question Answer Output Correct 

200 288 994 183 
Recall Precision F-measure MRR 

0.635 0.184 0.285 0.608 

Table 6. Performance of our system 
 

Rank # of questions 
1 98 
2 27 
3 14 
4 6 
5 4 

Table 7. Number of questions according to the 
rank of the first correct answer 

 
Answer type # of questions MRR 

Artifact 21 0.579 
Date 14 0.649 
Living thing 6 0.389 
Location 31 0.610 
Number 31 0.661 
Organization 19 0.543 
Person 42 0.614 
Substance 6 0.750 

Title 10 0.683 
Others 15 0.536 
Total 195 0.608 

Table 8. Performance according to each answer type3 
 
6. Discussions 
 

In this section we analyze our system’s results 
with some examples, especially in the case of failures. 

Answer types we used were not enough to cover 
all the questions. Q#36 and q#132 require a name of 
prize and legislative bill, respectively, but they are 
not defined in our system. In questions like q#7 and 
q#72, artifact is too rough to detect correct answers. 
We must define more general answer types using 
general or domain-specific thesaurus so as to cover 
various questions. 

For some questions like q#90, q#169, q#173, 
q#186, etc., our system failed to determine answer 
types and thus failed to return correct answers 
because manually constructed LSP’s and semantic 
class dictionaries were not complete yet. 

Failure to determining answer type does not 
always mean failure to detecting correct answers. For 
q#21, q#152, q#187, q#195, etc., our system could be 
successful to return correct answers by selecting 
bracketed entities. 

Some questions can be assigned to multiple 
answer types. In this case, answer candidates 
belonging to each answer type are detected and 
ranked by the scoring measure. For example, q#29 
was assigned ‘location’, ‘company’, etc. and q#136 
was assigned ‘year’ and ‘count’, this increased the 
ambiguity of answer candidates though correct 
answers to some questions could be ranked within 
top five by the scoring measure. 

We did not divide ‘count’ type in detail except 
age, volume, weight, area, speed, size, temperature, 
duration, rate, length, power and money. That is, we 
did not distinguish number of people from number of 
animals. Instead, we used unit word as a clue for 
detecting correct answer candidates. Unit word, 
however, is not always available with all ‘count’ type 
questions (e.g., q#49, q#52, q#194, etc). This also 
increased the ambiguity of answer candidates and 
made it difficult to rank correct answers high. 

Our LSP grammar for detecting answer 
candidates was not enough and complete, and thus 
failed to detect correct answers or extracted 
incorrect-type candidates to some questions. 

Success in determining answer type and detecting 
correct answer candidates does not always mean 
correct answers. Many of other failures were caused 
that our system ranked answer candidates only 
depending on the probabilistic measures without any 

                                            
3 Living thing includes ‘bird’ and ‘plant’, location includes ‘city’, 
‘country’, ‘mountain’, ‘planet’, ‘river’ and ‘state’, number includes 
‘age’, ‘area’, ‘count’, ‘duration’, ‘length’, ‘money’, ‘rate’, ‘speed’ 
and ‘temperature’, organization includes ‘company’ and ‘team’, 
and title includes ‘book’, ‘magazine’, ‘movie’ and ‘music’. 
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semantic answer justification. 
 
7. Conclusions 
 

We developed our Question Answering system 
for Japanese, SiteQ/J, to participate in QAC Task1 of 
NTCIR3. 

Our system narrows a search space using 
dynamic answer passage selection, and determines 
answer type of a question and extracts answer 
candidates using Lexico-Semantic Pattern matching 
without deep linguistic analysis of the texts. Detected 
answer candidates are ranked by passage scores and 
the measure of distance between answer candidates 
and matched terms. As a result of LSP engineering, 
our system showed the best performance 
(MRR=0.608) among 15 participating systems. 

In the future, we will try to reduce manual efforts 
to construct LSP’s and semantic category dictionaries 
by automatically learning them from extra web data. 
We will develop a method and construct knowledge 
to justify answers for higher precision. Automatic 
contextual taxonomy [20] learning can be one of the 
alternatives to go. 
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