
Applying Structural Matching and Paraphrasing

TAKAHASHI Tetsuro NAWATA Kozo INUI Kentaro
Graduate School of Information Science, Nara Institute of Science and Technology

Takayama, Ikoma, Nara, 630-0101, Japan
{tetsu-ta,kozo-n,inui}@is.aist-nara.ac.jp

KOUDA Shinya
Graduate School of Computer Science and System Engineering, Kyushu Institute of Technology

Iizuka, Fukuoka, 820-8502, JAPAN
s kouda@pluto.ai.kyutech.ac.jp

Abstract

We discuss the potentialities of structural match-
ing as a compromise between fully-conceptual deep
processing approaches and shallow bag-of-words ap-
proaches to answer seeking. We extended Collins’s
Tree Kernel [1] to formulate a new algorithm for soft
structural matching, and we also developed and tested
a method for combing structural matching with para-
phrasing. Unfortunately, we found no positive empiri-
cal evidence that either structural matching or para-
phrasing contribute to question answering. We be-
lieve, however, that their usefulness should not be
ruled out yet. We still need more deliberate experi-
ments and analysis.

Keywords: structural matching, paraphrasing,
paraphrase space

1 Introduction

Question answering is a specific task of language
understanding, which may act as a good benchmark
to approachdeepprocessing toward language under-
standing. A tempting but probably hasty approach
would be to attempt fully conceptual matching di-
rectly between questions and documents. Such a sys-
tem would derive conceptually represented informa-
tion from question and target documents and ana-
lyze them to infer the answer. Such an approach
would, however, entail obvious problems: above all,
(a) the overhead of the development and maintenance
of the conceptual representation for open-domain nat-
ural language documents, and (b) the lack of robust-
ness of state-of-the-art language understanding tech-
nologies.

Given this context, we need to find a compromise
between fully conceptual and shallow bag-of-words
matching. A feasible option is structural matching

at the level of syntactic structures (dependency struc-
tures). In this paper, we discuss the potentialities of
structural matching for question answering focusing
the following issues:

• For question answering, strict structural matching
is not adequate because a given question is almost
never structurally identical with a passage that
includes an answer candidate (simplypassage,
hereafter). We thus need to seek a method ofsoft
matching — more specifically, a method to eval-
uate the degree of structural similarity that suits
the purpose of answer seeking. At the same time,
we also need to consider computational over-
heads because we may need to carry out struc-
tural matching hundreds of times to search a sin-
gle passage for an answer.

• Language contains redundancies. The same piece
of information can often be linguistically real-
ized by more than one language expression. For
example, the information thatthe name of John
F. Kennedy’s father is Josephcan also be ex-
pressed by, for example, ‘John F. Kennedy,. . .,
his father, Joseph P. Kennedy’, ‘ John F. Kennedy
(1917-1963) — son of Joseph Patrick Kennedy’,
or ‘Joseph named his second son John Fitzgerald
Kennedy’. Structural matching may fail to detect
the identity between the information conveyed by
such paraphrases. The second issue is therefore
how to identify diverse paraphrases for answer-
ing questions.

For the first issue, we propose to extend Collins’s
Tree Kernel [1] to formulate a new algorithm for soft
structural matching. The computational cost of the al-
gorithm isO(nm) for matching ann-word question
and anm-word passage. We present the algorithm in
Section 2.

For the second issue, we explore possibilities of
incorporating of paraphrase generation into question

© 2003 National Institute of Informatics

Proceedings of the Third NTCIR Workshop

answering. In our experiments we used our lexico-
structural paraphrasing engine KURA[11]. We briefly
explain it in Section 3.

While these two components are both expected to
contribute to the approximation of conceptual match-
ing, combining them is also problematic. Addressing
this issue, we present an answer seeking algorithm in
Section 4.

We finally report the results of an empirical evalua-
tion in Section 5. The performance we have achieved
so far is disappointingly poor. We discuss the reasons
in Section 6.

2 Soft structural matching

As the basis of our soft structural matching algo-
rithm, we adopted the Tree Kernel method proposed
by Collins et al.[1] for the following reasons:

• It is designed to quantify the degree of similar-
ity between a given pair of trees, which already
partly fits our purpose.

• It detects partial matches of subtrees.

• It is computationally efficient.

To adapt Tree Kernel to question answering, however,
further extensions are necessary. For further details,
see our paper [10].

2.1 Tree Kernel

Collins et al. first defined the inner product between
a pair of trees as the number of common subtrees in-
cluded in both trees. The inner product of two trees
thus indicates to which degree they structurally over-
lap, which can potentially be used as the score of struc-
tural matching. Tree Kernel is a computationally effi-
cient method for calculating inner products.

In the Tree Kernel method, a treeT is rep-
resented as ann-dimensional vectorh(T) =
{h1(T), h2(T), . . . , hn(T)}, where thei’th element
hi(T) counts the number of occurrences of thei’th
subtree ofT . The inner product between two trees is
given by

K(T1, T2) = 〈h(T1),h(T2)〉
=

∑

i

hi(T1)hi(T2). (1)

Note that naive computation of this formula (i.e., sum-
ming over the counts of an exponential number of sub-
trees) would be intractable. The solution proposed by
Collins et al. is as follows.

(1) can be transformed to (2).

K(T1, T2) =
∑

n1∈N1

∑

n2∈N2

C(n1, n2) (2)

whereNi is the set of nodes in treeTi, andC(n1, n2)
is the number of common subtrees rooted atn1 and
n2. The C(n1, n2) can be calculated recursively as
follows:

• If the production (CFG rule) expanding noden1

is not the same as the production expandingn2,
thenC(n1, n2) = 0.

• If the production expandingn1 is the same as that
of n2, andn1 andn2 are both pre-terminals, then
C(n1, n2) = 1.

• Otherwise,

C(n1, n2) =
nc(n1)∏

i=1

(1 + C(ch(n1, i), ch(n2, i)))

(3)
wherenc(n1) is the number of non-terminal chil-
dren ofn1, andch(nj , i) is thei’th child node of
nj .

TheK(T1, T2) can be calculated inO(|N1||N2|) time.
Note that this computational order is as small as that
for the inner product of simple bag-of-words vectors.

Let us give an example, for the trees in (4). Alpha-
betical labels denote node types, while suffix numbers
denote token identifiers. The above algorithm fills the
table as in Table 1 in the left-to-right and bottom-to-
top order. The final resultK(T1, T2) is given by sum-
ming up all the counts in the table.

a

b cd

f

a b

b c d

(4)

T = T =1 2

4

2 3 1

5

6

1 2 4

3

g 5

Table 1. Node-wise similarity matrix
C(n1, n2) for the trees in (4)

g5 0 0 0 0 0 0
a4 0 0 4 0 0 0
c3 0 1 0 0 0 0
b2 1 0 0 0 0 0
d1 0 0 0 1 0 0

b1 c2 a3 d4 b5 f6

T2

2.2 Adapting Tree Kernel to question answer-
ing

Now we extend the original Tree Kernel method to
adapt it to structural matching for question answering.

The Third NTCIR Workshop, Sep.2001 - Oct. 2002

Let us first see an example. Assume we are now
trying to match question (5)1 with passage (6) .

(5) 聖火リレーは最初に 〈PLACE〉のオリンピック
で行なわれた。
(The Olympic Torch Relay was first introduced in
the Olympic Games in〈PLACE〉)

(6) . . .長野オリンピックの事務局によると聖火リ
レーはベルリンオリンピックではじめて行なわ
れた。. . .
. . . (According to the Nagano Olympic secre-
tariat, the first Olympic Torch Relay was con-
ducted for the first time at the Berlin Olympic
Games.). . .

(9) has at least two answer candidates: “長野
(Nagano)” and “ベルリン (Berlin)”. While a bag-
of-words model may not be able to selectBerlin as
the correct answer, we aim to develop a model that
choosesBerlin with certainty it even in such an am-
biguous case.

First, we modify formula (3) to (7):

C(n1, n2) = sim(n1, n2)
∏

k∈ch(n1)

∏

l∈ch(n2)

(1+C(k, l))

(7)
wherech(n) denotes the set of the children of node
n, andsim(n1, n2) denotes a function that gives the
degree of similarity between nodesn1 andn2 ranging
between [0,1]. This extension enhances the flexibility
of structural matching in the following sense:

• While the original Tree Kernel applies only to
ordered trees, formula (7) allows us to treatun-
ordered trees, in which the order of siblings is
not cared. This enables us to use the depen-
dency tree representation to represent questions
and passages as in Figure 1, which is advanta-
geous in structural matching particularly for free-
word-order languages such as Japanese.

• The factorsim(n1, n2) enables the incorpora-
tion of semantic similarity measurements be-
tween nonidentical words. In Figure 1, for exam-
ple, it is reasonable to count the match between “
最初に (first)” and “はじめて (for the first time)”.

Second, in question answering, a passage that cov-
ers larger subparts of a given question is preferable.
At the same time, on the other hand, even if an iden-
tical common subtree occurs repeatedly in a passage,
we want to avoid counting them redundantly. For ex-
ample, in the above example, the word “オリンピック
(Olympic)” may appear again and again in the passage
as in Figure 1. If we added such repeated occurrences

1Here, (5) is assumed to be a sentence obtained by paraphras-
ing the original question sentence.〈PLACE〉 denotes a question
variable representing the question word “どこ (where)”.

to the score, the system would choose longer passages,
which is not beneficial. The original function (2), how-
ever, counts such occurrences redundantly. We solve
this problem by replacing (2) with:

K(T1, T2) =
∑

n1∈N1

max
n2∈N2

C(n1, n2). (8)

whereT1 is assumed to be a question andT2 a passage.
The (8) means that we select the best match with the
highest score for each node of a question and only sum
up the scores of those matches.

Third, the goal of structural matching is to find the
element that corresponds best to the question word,
such aswho or when, of a given question. The sim-
ilarity function (7) is, however, not very helpful for
finding the correct match for a question word, be-
cause a question word usually appears in a leaf posi-
tion, whereas an inter-node similarity score given by
(7) only reflects the similarity between the subtrees
rooted at a given pair of nodes. For example, again
in Figure 1, (7) has no context information for judg-
ing whether the question word node〈PLACE〉matches
better with “長野 (Nagano)” or “ベルリン (Berlin)”
because〈PLACE〉 is a leaf. To solve the problem, we
use (9), instead of (3), to seek the best correspondence
for a question word. The (3) counts the number of the
common subtrees rooted at the given nodes, whereas
(9) counts the number of all of the common subtrees
includingthem.

C(n1, n2) = Cbu(n1, n2)× Ctd(n1, n2) (9)

Ctd(n1, n2) =
sim(n1, n2)

∏
k∈ch(n1)

∏
l∈ch(n2)

(1 + C(k, l))

Ctd(n1, n2) =(
Ctd(p(n1), p(n2))× Cbu(p(n1),p(n2))

Cbu(n1,n2)

)
+ 1

3 Paraphrasing for question answering

For the paraphrasing process, we use our lexico-
structural paraphrasing engine KURA[11]. For a given
source sentence, KURAgenerates possible paraphrases
by using a rule-based syntactic transfer.

When we started to develop our question answering
system, several types of paraphrasing rules for general
purposes had already been implemented on KURA.
We added 161 paraphrasing rules to this rule set spe-
cialized for question answering. The current rule set is
summarized in Table 2. The rule classes marked by *
are the newly added ones. The second column shows
the number of rules of each class, and the third col-
umn shows how many times the rules were applied in
the 200 questions Formal Run (2000 pairs of questions
and candidate passages in total).

• Relative clause
日本の代表的な国語辞典として知られる広辞

Proceedings of the Third NTCIR Workshop

(8)

(9)

PLACE
�

�������
(relay)

�
	

(Sacred-fire) �
� ��

(Berlin)

�������

(fot the first time)

���������

(was conducted)

�����

(according to)

�
 "!$#

(secretariat)

(Nagano)

% ��
�&('*) �

(Olympic)

% �+
$&�'�)-,

(Olympic)

�.�(�"�.�

(was introduced)

% ��
�&('*)*,

(in the Olympic games)
/
0 #

(first)

�(�1�"�
(relay)

�"	

(Sacred-fire)

% ��
�&('*)*,

(Olympic)2"3

Figure 1. Dependency trees of (5) and
(6)

苑の第五版が１１月１１日に刊行される。→
広辞苑は日本の代表的な国語辞典として知ら
れる。広辞苑岩波書店の第五版が１１月１１日
に刊行れる。

• Functional compound
宮崎駿に対する評価は高い。→宮崎駿への評
価は高い。

• Noun to gloss
夏目漱石の遺作は「明暗」だ。
→夏目漱石の死後に残した未発表の作品は「明
暗」だ。

• Ideomatic phrase
道草を食う
→途中で他の事に時間を費やす

• Cleft sentence
ペルー軍兵士に殺害されたのは PERSONだ。
→ PERSONはペルー軍兵士に殺害された。

• Appositive
デビッド・スミス容疑者 (３０)は、コンピュー
タウィルス「メリッサ」を作った。
→デビッド・スミス容疑者（３０）は、コン
ピューターウイルスを作った．デビッド・スミ

Table 2. Paraphrasing rules
Rule class Number Applied

relative clause 8 3265
adverbial clause 18 754
sahen-verb towago-verb 6642 4503
verb alternation 34 439
ideomatic phrase 3942 0
functional compound 261 471
noun to synonym 3633 4725
cleft sentence 25 475
* negative clause 62 3416
* noun to gloss 45565 345
* appositive 25 3133
* coordination 18 46
* copula 10 1162
* compound noun 13 115
* newspaper-specific 29 1351

ス容疑者（３０）は、「メリッサ」を作った。
「メリッサ」は、コンピューターウイルスだ。

• Coordination
景気後退などの影響を受け、ハウステンボス (長
崎県)、志摩スペイン村 (三重県)、レオマワー
ルド (香川県)なども入場者が減っている．
→景気後退などの影響を受け、ハウステンボ
ス（長崎県）も入場者数が減っている。景気後
退などの影響を受け、志摩スペイン村（三重
県）なども入場者数が減っている。景気後退な
どの影響を受け、レオマワールド（香川県）な
ども入場者数が減っている。

• Copula
夏目漱石の「坊っちゃん」は名作だ。
→夏目漱石の名作は「坊っちゃん」だ。

• Compound noun
日本製アニメ、続々と米国に上陸。
→日本で作られたアニメ、続々と米国に上陸。

• Newspaper-specific
異国で身を立てた我が子の雄姿に母は涙――
第６７代横綱に昇進した。
→ 異国で身を立てた我が子の雄姿に母は涙。
第６７代横綱に昇進した。

4 Answer seeking by structural match-
ing and paraphrasing

We use structural matching as an approximation of
conceptual matching. Namely, the structural matching
score of a given question-passage pair is considered as
a rough approximation of the likelihood that the node
corresponding to the question variable is the correct
answer. Obviously, this approximation is imprecise in

The Third NTCIR Workshop, Sep.2001 - Oct. 2002

many cases because structural matching does not take
paraphrases into account.

This section presents one straightforward method
we have tested so far to combine structural matching
with paraphrasing. In this method, paraphrasing is re-
sponsible for making structural matching more closely
approximate to conceptual matching.

Given questionq and a set of passagesP that may
include the answer forq (see Section 5 for passage
generation), we call the procedureSeekAnswerCandi-
dates(see Figure 2) to obtain the n-best answer candi-
dates. For each passagep in P, this procedure gener-
ates a paraphrase space betweenq andp to seek bet-
ter structural matches as illustrated in Figure 3. Here
a paraphrase space is the search space consisting of
paraphrases generated from either a question or a pas-
sage. Since it can be intractably large, we restrict the
paraphrase generation in a greedy search-like manner
as described in Figure 2 (SearchParaphraseSpace).

SeekAnswerCandidates(q,P) {
A ← {}
for eachp ∈ P do
A ← A∪ SearchParaphraseSpace(q, p)

returnChooseNBest(A) }

SearchParaphraseSpace(q, p) {
Q,P,A ← {}
while notTerminateCondition(A) do{

Q ← Q ∪ Paraphrase(q)
P ← P ∪ Paraphrase(p)
(q, p; a) ← ClosestPair(Q,P)
A ← A ∪ (q, p; a) }

returnA }

ChooseNBest(A) : a function that returns then-best
answer candidate string according to the struc-
tural matching score

TerminateCondition(A) : a boolean function that
checks if the improvement of the best structural
matching score inA is saturated

Paraphrase(p) : a function that returns a set ofp’s
paraphrases generated by an application of a sin-
gle paraphrasing rule

ClosestPair(Q,P) : a function that returns the best
structural matching pair and the corresponding
answer candidate string.

Figure 2. The answer-seeking algorithm

5 Evaluation

5.1 System overview

In the present system, the overall question-
answering process has three steps:

1. Document retrieval: The system first submits a
set of the keywords contained in a given question
to the IR tool [12] to retrieve the 20-best docu-
ments.

2. Passage generation:The system then summa-
rizes the 20 retrieved documents by simple sen-
tence extraction, and produces a set of passages.
In this process, the system first use an named en-
tity tagging tool named NExT [7] to annotate the
retrieved documents with NE tags. Then, it ranks
all the sentences included in the document set
according to factors including the question type,
question keywords, NE tags, etc. For each of the
10-best ranked sentences (key sentences) the sys-
tem then generates a passage by conjoining the
key sentence, its two adjacently preceding sen-
tences , and the document title.

3. Answer seeking: Finally, the system searches
the given the 10-best passages for answer candi-
dates (see Section 4). For sentence parsing, we
use the KNP parser[5]. We adopted dependency
trees with their nodes theBunsetsu-phrasal units
to represent parsed questions and passages. The
parameters for structural matching and for the
paraphrasing rules were tuned manually by using
the Dry Run data.

5.2 Results

In the Formal Run session held on April 22–26,
2002 our system was not able to produce a correct an-
swer to any question. The precision and recall were
thus both 0.0%. The primary reason was that the sys-
tem simply did not work as intended due to implemen-
tation problems. In addition, the matching algorithm
process was less flexible than described in Section 2;
therefore, the system could in many case not even find
one single answer candidate.

After submitting the Formal Run results, we fixed
several implementation problems and also completed
the implementation of the structural matching algo-
rithm. We left the Formal Run data unseen throughout
this refinement process. The final results are summa-
rized in Table 3. In the rest of this paper, we discuss
why the results attained after the refinement still re-
mained equally poor. Hereafter, we refer to the run
after the refinement simply asthe experiment.

Proceedings of the Third NTCIR Workshop

Figure 3. System overview

Table 3. Results for the Formal Run data

Formal Run Final
(April 26) (August 15)

Correct 0 38
Recall 0.0 0.132
Precision 0.0 0.047
F-measure 0.0 0.070
MMR 0.0 0.116

6 Discussion

The results shown in Table 3 were extremely disap-
pointing. This does not rule out, however, that struc-
tural matching or paraphrasing can contribute to ques-
tion answering. We need to carefully investigate why
the contribution was negligibly small. Our error analy-
sis has so far revealed that the current system has prob-
lems both inside and outside the process of structure-
based answer seeking.

6.1 Problems surrounding answer seeking

A major problem outside the structure-based an-
swer seeking component is that the fundamental com-
ponents for passage extraction, such as NE tagging
and coreference generation, are too naive and frag-
ile to bring out the potentialities of structural match-
ing and paraphrasing. It was the case partly because
we concentrated too much on developing the answer
seeking procedure, including structural matching and
paraphrasing, while leaving the other components al-
most untuned. Tuning is only a part of the problem,
however.

Passage generation

One essential problem lies in passage generation. We
only achieved a 55% precision for the 10 generation
of best passages for the 200 Formal Run questions.
Namely, there were only 110 questions where the 10-
best passages returned by the passage generation mod-
ule actually included at least one correct answer string.
Furthermore, even in such a correct passage , the ev-
idential information that is needed for answering was

The Third NTCIR Workshop, Sep.2001 - Oct. 2002

sometimes dropped. This was the case in 30 questions
out of the above 110 questions. The precision of pas-
sage generation in the strict sense was merely 40%.
Given that the precision of 10-best-document retrieval
was 85% (89% for 20-best), the deterioration caused
by the passage generation was serious.

This problem is closely related to the computational
costs of structure-based answer seeking. As men-
tioned earlier, the reason we summarize documents
before answer seeking is that structure-based answer
seeking could be prohibitively costly if entire docu-
ments need to be searched.

Of course, the passage generation algorithm itself
can be improved greatly because the current one is
so naive. For example, exploring the possibilities of
controlling sentence extraction interactively with an-
swer seeking should be promising. We also need to
reduce the computational costs of structure-based an-
swer seeking (see Section 6.2).

NE tagging

Fortunately, since the NE tagging tool NExT was
available for use, we did not have to spend time de-
veloping one ourselves. We have so far used NExT
without any significant tuning or extension. However,
since our structural matching algorithm relies heavily,
possibly too heavily, on NE tags to find the bindings
of question variables, the overall performance strongly
depends on the NE class taxonomy and classification
(tagging) performance.

In the experiment, out of the 2000 passages re-
turned by the passage generation module for the 200
questions, 201 passages actually included an answer.
Out of the 201 passages, the answer seeking proce-
dure only found a correct answer for 44 passages. For
the remaining 157 passages, 94 cases were related to
NE-tagging errors.

6.2 Problems in answer seeking

Contribution of paraphrasing

For the above-mentioned 110 questions (999 candidate
passages in total), where the 10-best passages included
at least one occurrence of the answer string, the system
only generated 128 paraphrases in total that gained a
structural matching score (0.13 paraphrases per pas-
sage). This means that, in the experiment, the para-
phrasing component contributed unexpectedly little to
the answer seeking process. The main reasons are as
follows:

• The paraphrasing rules were often not applied as
a result of parsing errors. Our syntactic transfer-
based algorithm for paraphrasing may be too sen-
sitive to parsing performance.

• If the keywords associated with a question are
scattered over different sentences in a given pas-
sage, the currently implemented paraphrasing
rules are almost helpless. This is because, so
far, we have no rule that can aggregate such scat-
tered keywords into a single sentence. If we could
have applied a sophisticated coreference resolu-
tion (including ellipsis) beforehand, the results
might have changed. How heavily we can rely
on a coreference resolution to solve the problem
remains unclear, however.

Contribution of structural matching

Given the current low performance, quantitatively
evaluating the contribution of structural matching is
not easy. Out of the above 44 passages where the
answer seeking procedure was successful, the system
could have found an answer for 41 passages, even if
no structural information had been taken into account.
Therefore, the contribution of structural matching was
also very limited. The reason seems to be the same as
the problem of paraphrasing, structural matching tends
to function similarly to bag-of-words matching when
keywords are scattered over different sentences.

Computational cost

Another obvious and serious drawback of our answer
seeking method is the computational overhead of para-
phrasing. As stated above, the system generated 128
paraphrases for the 110 questions that gained struc-
tural matching score. This number may seem negli-
gibly small. To find the effective paraphrases, how-
ever, the system had to generate 12037 paraphrases in
total. This means that almost 99% of the paraphrases
were generated in vain just for probing search spaces.
Clearly, we need a more sophisticated way of control-
ling paraphrase generation. Some goal-oriented mech-
anisms for paraphrasing-rule selection are worth con-
sidering.

6.3 Trainability

Parameter tuning

The behavior of the answer seeking process may sig-
nificantly depend on the parameter settings of the
structural matching. All the parameters have so far
been set heuristically. We are in the process of de-
veloping a mechanism to tune them automatically by
using question answering training data.

Acquisition of paraphrasing patterns

We may need a much larger number of paraphrasing
rules to identify more diverse paraphrases. For this
purpose, we also need to explore a way of acquiring

Proceedings of the Third NTCIR Workshop

paraphrasing patterns by aligning questions and an-
swer passages.

7 Related work

The idea of using paraphrasing for question answer-
ing has been proposed [8, 2]. While their paraphrasing
was done in surface level with small rule sets, we con-
ducted paraphrasing in syntactic level with the large
set of rules.

The information of syntactic structures is used
in several existing question answering systems.
Harabagiu et al.[3], for example, use dependency
structures to derive logical forms which are used to
justify answers. During the transformation into a
logical form, syntactic information is somehow ab-
stracted. In contrast, we directly use structural infor-
mation without abstracting. Ittycheriah et al.[4] use
fragmental information of syntactic structures as a fea-
ture of their machine learning approach, while we see
entire structures. Murata et al.[9] also used the depen-
dency structure in Japanese to calculate the similarity
between a question sentence and sentences which are
expected to include the answer. They concerned bino-
mial relationship between the nodes in a dependency
tree in there calculation.

In comparison with those studies, our approach may
be too rigid and less robust. Given the results, we need
to seek more robust ways of both structural matching
and paraphrasing.

8 Conclusion

In this paper, we proposed a method for combin-
ing structural matching and paraphrasing to realize
structure-based answer seeking. So far we have found
no positive evidence that either structural matching or
paraphrasing contribute to question answering. We be-
lieve, however, that it is still too early to rule out the
usefulness of the method. We need more deliberate
experiments and analysis.

Acknowledgements

We thank Fumito Masui, Shinya Suzuki (Mie Uni-
versity) and Jun’ichi Fukumoto (Ritsumeikan Univer-
sity) for allowing us to use their NeXT NE tagging
tool, and Masao Utiyama (Communications Research
Laboratory) for his IR engine ruby-ir. We also thank
Takaki Makino, Jun’ichi Tsujii and their colleagues
at Tokyo University for helping us to use their typed-
feature unification system, LiLFeS [6], for implement-
ing our Q/A system and KURA, Sadao Kurohashi
(Tokyo University) and Makoto Nagao (Kyoto Univer-
sity) for KNP, and the NTT Communication Science

Laboratories for their case frame dictionary and the-
saurus, which we used for paraphrase generation.

Finally, we thank Atsushi Fujita, Iida Ryu (Nara
Advanced Institute of Technology) and Tomoya
Iwakura (Kyushu Institute of Technology) for helping
us use KURA.

References

[1] M. Collins and N. Duffy. Convolution kernels for nat-
ural language. InNeural Information Processing Sys-
tems (NIPS), 2001.

[2] S. Dumais, M. Banko, E. Brill, J. Lin, and A. Ng. Web
question answering: Is more always better? Inthe
25th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval
(SIGIR 2002), 2002.

[3] S. Harabagiu, D. Moldovan, M. Pasca, M. Sur-
deanu, R. Mihalcea, R. Girju, V. Rus, F. Lactusu,
P. Morarescu, and R. Bunescu. Answering com-
plex, list and context questions with lcc’s question-
answering server. Inthe 2001 edition of the Text RE-
trieval Conference (TREC), 2001.

[4] A. Ittycheriah, M. Franz, and S. Roukos. Ibm’s statis-
tical question answering system–trec-10. Inthe 2001
edition of the Text REtrieval Conference (TREC), page
258, 2001.

[5] S. Kurohashi and M. Nagao. Kn parser : Japanese de-
pendency/case structure analyzer. Inthe International
Workshop on Sharable Natural Language Resources,
pages 48–55, 1994.

[6] T. Makino, K. Torisawa, and J. Tsujii. Lilfes—
practical unification-based programming system for
typed feature structures. Inthe Natural Language Pro-
cessing Pacific Rim Symposium (NLPRS), pages 239–
244, 1997.

[7] F. Masui, S. Suzuki, and J. Fukumoto.テキスト処理の
ための固有表現抽出ツール nextの開発 (in japanese.
In言語処理学会第 8回年次大会発表論文集, page
176, 2002.

[8] M. Murata and H. Isahara. Universal model for para-
phrasing: Using transformation based on a defined cri-
teria. InNLPRS’2001 Workshop on Automatic Para-
phrasing: Theories and Applications, 2001.

[9] M. Murata, M. Utiyama, and H. Isahara. Qestion an-
swering system using similarity-guided reasoning.In-
formation Processing Society of Japan NL-135, pages
181–188, 2000.

[10] T. Takahashi, K. Inui, and Y. Matsumoto. Methods
for estimating syntactic similarity (in japanese). InIn-
formation Processing Society of Japan NL-150, pages
163–170, 2002.

[11] T. Takahashi, T. Iwakura, R. Iida, A. Fujita, and
K. Inui. Kura: A revision-based lexico-structural para-
phrasing engine. Inthe Natural Language Processing
Pacific Rim Symposium (NLPRS-2001) Workshop on
Automatic Paraphrasing: Theories and Applications,
2001.

[12] M. Utiyama and H. Isahara. Tools for exploring natu-
ral language. Inthe Natural Language Processing Pa-
cific Rim Symposium (NLPRS-2001), pages 779–780,
2001.

The Third NTCIR Workshop, Sep.2001 - Oct. 2002

