
A summarization system with categorization of document sets

Chikashi NOBATA† Satoshi SEKINE‡

Kiyotaka UCHIMOTO† Hitoshi ISAHARA†

†Computational Linguistics Group
Communications Research Laboratory
2-2-2 Hikaridai Seika-Cho Soraku-Gun

Kyoto, 619-0289 Japan
{nova,uchimoto,isahara}@crl.go.jp

‡Computer Science Department, New York University,
715 Broadway, 7th floor, New York, NY 10003 USA

sekine@cs.nyu.edu

Abstract

We participated in both the single-document and
multi-document summarization tasks at the TSC 2002.
We have incorporated two modules into our earlier
summarization system, which is based on a sentence-
extraction technique, so that we could apply the sys-
tem to the multi-document summarization task. One
is a module to categorize document sets and the other
is to estimate the similarity between sentences. The
categorization of document sets is done based on ex-
tended named entity classes that include event or facil-
ity types as well as original classes. Our system uses
the category information to decide how to use simi-
larity information. The similarity between sentences
is measured according to the Dice coefficient, and the
results are used to either select a representative sen-
tence from among similar sentences or to extract typi-
cal sentences from a given document set.

Keywords: Multi-document summarization, Sen-
tence extraction, Document set categorization, Sen-
tence similarity

1 Introduction

Our summarization system is based on a system that
we developed for TSC2001[7] and uses a sentence-
extraction technique, a frequently used method for
summarization ([9], [2], [12], [8], [1], [4]). Since
our previous system could only produce a summary
for a single document, we added two modules so that
we could apply the system to a multi-document sum-
marization task. One module is to categorize doc-
ument sets to allow multi-document summarization,
and the other is to estimate the similarity between sen-

tences. We describe how these two modules work
with the sentence-extraction system in Section 2. At
TSC2002, we participated in both single-document
summarization (Task A) and multi-document summa-
rization (Task B) [11]. The evaluation results of our
system for these tasks are discussed in Section 3.

2 System Overview

In this section, we explain the scoring functions
used for extracting key sentences, which are revised
forms of those used in our previous system. Then, we
introduce the two added modules: one to categorize
document sets and one to measure sentence similarity.

2.1 Score function

Our system uses four types of metrics to estimate
the significance of sentences: sentence position, sen-
tence length, term frequency, and similarity to the title.
The significance of sentences is given by the sum of
the values of these metrics which is used with param-
eters. Each metric is explained below.

2.1.1 Sentence position

Our system has a function that uses sentence position
to establish the significance of sentences. In this func-
tion, three methods are used to handle sentence posi-
tion. The first is to give a score of 1 to the firstN sen-
tences and 0 to the others, whereN is a given threshold
for the number of sentences. That is, the score of the
ith sentence(Si) is:

P1.Scorepst(Si)(1 ≤ i ≤ n) = 1 (if i < N)

= 0 (otherwise)

© 2003 National Institute of Informatics

Proceedings of the Third NTCIR Workshop

wheren is the number of sentences in a given article.
The second method is to give a score that is the recip-
rocal of the sentence position, so that the score of the
ith sentence(Si) is:

P2.Scorepst(Si) =
1
i
.

These two methods are based on the hypothesis that
sentences at the beginning of an article are more im-
portant than those elsewhere in the article.

The third method is a modified version of the sec-
ond in that it checks the sentence position from the end
of the article as well as from the beginning:

P3.Scorepst(Si) = max(
1
i
,

1
n− i + 1

).

This method is based on the hypothesis that sentences
at either the beginning or the end of an article are more
important than those in the middle.

The third method (referred to as P3) performed best
in the training stage using the dry run data.

2.1.2 Sentence length

The second scoring function uses sentence length to
establish the significance of sentences. The length here
means the number of characters in the sentence. Two
methods are defined here. The first returns the length
of each sentence(Li) relative to the maximum length
of the sentence(Lmax). Because we would like to use
a uniform setting for all document sets, we fixed the
value of(Lmax) in advance to 200.

L1. Scorelen(Si) =
Li

Lmax
(if Li ≤ Lmax)

= 1 (otherwise).

The second method sets the score to a negative value
as a penalty when a sentence is shorter than a certain
length(Lmin):

L2. Scorelen(Si) = 0 (if Li ≥ Lmin)

=
Li − Lmin

Lmin
(otherwise).

Since we setLmin to 20 in the following evaluation, a
sentence with 20 or fewer characters received a penalty
score. The second method (L2) performed better in the
training stage using the dry run data.

2.1.3 Tf*idf

The third scoring function is based on term frequency
and document frequency. The hypothesis here is that
sentences containing more words that are specific to an
article are more likely to be relevant. The target words
are nouns (excluding temporal or adverbial nouns),

and the system calculates the tf*idf score for each of
these nouns in a sentence,. The total score indicates
the significance of the sentence. The word segmenta-
tion is done using Juman ver. 3.61 [3].

When a set of documents is given in advance, our
system counts the term frequency (tf) and the docu-
ment frequency (df) for each wordw, then calculates
the tf*idf score as follows:

tf*idf (w) = tf(w) log
DN

df(w)

whereDN is the number of given documents. We used
articles that appeared in the Mainichi newspaper from
1994 to 2001 to count the document frequency.

The sentence score with tf*idf values of words is
calculated with normalization [5]. When a document
D is given, our system calculates the Euclidean norm
for tf*idf values for all words inD (Dnorm).

Dnorm =
√ ∑

w∈D

tf*idf (w)2

The score for theith sentence (Si) in D is then calcu-
lated as follows:

Scoretf*idf (Si) =
1

Dnorm

√ ∑

w∈Si

tf*idf (w)2

2.1.4 Headline

The fourth scoring function is to use the headline of an
article to establish the significance of sentences. The
basic idea is that the greater the number of words in
a sentence that match those in the headline, the more
important the sentence is likely to be. This function
estimates the relevance between a headline (H) and
a sentence (Si) using the tf*idf values of words (w)
(except for the stop words) in the headline:

H1. Scorehl(Si) =

∑

w∈H∩Si

tf*idf (w)

∑

w∈H

tf*idf (w)

We also evaluated this scoring function using only
named entities (NEs) instead of the nouns. Named en-
tities were annotated by a pattern-based named entity
extraction program developed to annotate extended
named entity categories [10]. For NEs, only the
term frequency was used because we expected the doc-
ument frequency for entities (e) to usually be quite
small, thereby making the difference between entities
negligible:

H2. Scorehl(Si) =

∑

e∈H∩Si

tf(e)
tf(e)+1

∑

e∈H

tf(e)
tf(e)+1

The Third NTCIR Workshop, Sep.2001 - Oct. 2002

From the training data, we found that the scoring func-
tion using only NEs worked better than that using all
words.

2.2 Parameters

Our system uses parameters to integrate the results
of each scoring function in order to calculate the total
score for a sentence. The total score for a sentence (Si)
is determined using a scoring function (Scorej()) and
a parameter (αj) as follows:

Total-Score(Si) =
∑

j

αjScorej(Si)

Our system calculates a score for all of the sentences
and sets the ranking of each sentence in descending
order of score. The order of the extracted sentences
is the same as in the original articles when the system
outputs a summary.

We approximated the optimal values of these pa-
rameters using the extraction data created from the dry
run data of Task A. The parameter sets for Task A were
also used for Task B: the parameter set for 20% com-
pression in task A was applied to the short summary
task in Task B, and that for 40% was applied to the
long summary task.

After the range of each parameter was set manu-
ally, the system changed the values of the parameters
within the range and performed a summarization based
on the dry run data. Each score was recorded whenever
the parameter values were changed, and the parameter
values resulting in the best score were stored.

Table 1 shows the contribution of each feature that
was the basis of a scoring function. The contribution
was the product of the optimized weight and the stan-
dard deviation of the score. The weights were normal-
ized by the norm of all weights; i.e.

∑

j

αj = 1.

The function types selected in the training stage are
also shown in the table.

When the compression ratio was 20%, the largest
contribution was from the tf*idf feature and the next
largest was from the length feature. On the other hand,
when the compression ratio was 40%, the length fea-
ture was dominant.

2.3 Categorization of document sets

For multi-document summarization, our system as-
signs a given document set to a category before gener-
ating summaries. We defined 13 categories based on
the NE classes, which are shown in Table 2. They are
also an extension of the categories used in [6].

Table 1. Contribution of each feature
Contribution (×10−2)

Features Type 20% 40%
Position P3 8.51 4.99
Length L2 10.11 14.83
tf*idf - 12.57 1.84
Headline H2 1.16 0.34

Table 2. Types of categories
Single-Person Multi-Person
Single-Organization Multi-Organization
Single-Location Multi-Location
Single-Facility Multi-Facility
Single-Product Multi-Product
Single-Event Multi-Event
Other

“Single” means that all the articles are talking
about a single event, person, or organization, whereas
“multiple” articles are talking about several different
events, people, or organizations. Also, we assign the
entity type of the central topic to one of the NE cate-
gories. We used the definition developed in [10].

The categorization module uses the frequency and
document frequency of words and NE tags. The NE
classes to be tagged are those that we used in the defi-
nition; i.e., ‘ORGANIZATION’, ‘PERSON’, ‘LOCA-
TION’, ‘EVENT’, ‘PRODUCT’, and ‘FACILITY’.

Besides NE tags, a ‘class-term’ list is also used.
Class-terms are nouns or compound nouns which are
closely related to a particular NE class. For example,
“president” is a person class-term, and “earthquake”
is an event class-term. When terms from the list are
found in the given document set, the system stores the
frequency and the document frequency of the terms
and the class, respectively. The lists contain about
16,000 class-terms that were created using a thesaurus
and some human labor for a different task.

Our categorization method contains three stages.
First, we try to determine if a given set belongs in a
single-class category. This is done by checking the
document frequency of the most frequent (in terms
of document frequency) NE word. If a particular NE
word appears throughout the documents in the set, the
word is likely to be the main topic and the NE type
of the word might indicate the category. We empiri-
cally found that different criteria are needed between
EVENT type and the other classes (Figure 1).

The second step is that if no single-class category
is found, we try to find if the set is a multi-class cate-
gory by using the most frequent (again in terms of the
document frequency) NE class. If the document fre-
quency of words in a particular NE class is high (i.e.,

Proceedings of the Third NTCIR Workshop

w = the word with the highest DF
pw = the NE class assigned tow
if DF(w) > Td then

if pw = Event then
category = Single-Event

else if |w||pw| > Tw then
category = Single-pw

else gotoAlgorithm 2
else gotoAlgorithm 2

Figure 1. Pseudo code for the ‘single-
class’ category (Algorithm 1)

p = NE class with the highest DF
P = all NE classes
if DF(p) > Td then

if p = Event then
category = Multi-Event

else ifp = (L or O or P) then
if |p|
|P | > TC1 then
category = Multi-p

else gotoAlgorithm 3
else if |p||P | > TC2 then

category = Multi-p
else gotoAlgorithm 3

else gotoAlgorithm 3

Figure 2. Pseudo code for the ‘multi-
class’ category (Algorithm 2)

words of a particular NE class appear throughout the
documents), that class is likely to be the multi-class
category of that NE type (Figure 2).

Third, we use the class-term to find if the set be-
longs in a multi-class category. The system repeats
the first and the second step explained above, look-
ing for class terms instead of NEs, and always outputs
multi-classes instead of single-classes. All categories
created at this step are multi-class, as the target we are
looking at is common nouns, rather than proper nouns.
In other words, if a class-term word appears through-
out the documents, it is likely to belong to a multi-class
category (Figure 3).

The details of the algorithms are described in
pseudo code as shown in Figures 1 to 3. Here, “DF”
means “document frequency” and “L or O or P” means
“Person or Location or Organization”.

2.4 Similarity between sentences

We added a module to estimate the similarity be-
tween sentences. Similarity values are used to either
select one key sentence from among semantically sim-
ilar sentences or output a set of similar sentences with

t = class-term with the highest DF
qt = NE class assigned tot
q = NE class with the highest DF made from all class-
terms in the class
Q = all NE classes made from class-terms

if DF(t) > Td then
if qt = Event then

category = Multi-Event
else if |t||qt| > Tw then

category = Multi-qt

else goto NECLASS
else goto NECLASS

NECLASS:
if DF(q) > Td then

if q = Event then
category = Multi-Event

else ifq = (P or L or O) then
if |q|
|Q| > TC1 then
category = Multi-q

else category = Multi-Event (DEFAULT)
else if |q||Q| > TC2 then

category = Multi-q
else category = Multi-Event (DEFAULT)

else category = Multi-Event (DEFAULT)

Figure 3. Pseudo code for ‘multi-class’
category using class-terms (Algorithm 3)

The Third NTCIR Workshop, Sep.2001 - Oct. 2002

high sentence scores.
The system calculates the Dice coefficient as a sim-

ilarity measure based on the number of words between
two sentencesSx andSy. For the words{xi|xi ∈ Sx}
and{yj |yj ∈ Sy}, the similarity betweenSx andSy is
calculated as

Dice(Sx, Sy) =

2
∑

xi=yj

ave(f(xi), f(yj))

∑

i

f(xi) +
∑

j

f(yj)
.

The functionf() gives the weight for each word.
Three types of weight can be selected:

Binary: if the word appears in the sentence, the
weight is set to 1. Otherwise, the weight is set
to 0.

Tf: the tf value of the word.

Tf*idf: the tf*idf value of the word.

The system uses one of the weights to calculate sim-
ilarities. We used the simplest similarity measure for
the formal run, i.e., the Dice coefficient with the binary
weight, because we didn’t observe any significant dif-
ference among the weights in the experiment using the
dry run data.

Sentence pairs that have a coefficient value higher
than a thresholdTs are regarded as similar to each
other. The value of the thresholdTs is set to 0.5 at
the training stage.

Our system has two methods to use the similarity
information. One method is to select only the one sen-
tence that has the highest sentence score among sim-
ilar sentences. When this sentence is selected, other
sentences that are similar to the selected one are dis-
carded. This is intended to remove redundancy from
the generated summary. For example, in articles about
a criminal case the established facts of the case are
repeatedly described. Such repetition should be re-
moved.

The other method is to output a set of similar sen-
tences when one of them is selected. This is intended
to output typical expressions in the given document
sets. For example, when each article in a given doc-
ument set describes an earthquake that occurred at a
different place, expressions in the articles are typical
and similar, but provide us with different information.
These expressions should be included in the summary
of the document set.

3 Results and discussion

In this section, we discuss the evaluation results
of our system for each task of the TSC formal run.
We consider the subjective ranking evaluation in Task

Table 3. Evaluation results for Task A

C20% R20% C40% R40% ALL
Sys 2.70 2.60 2.50 2.53 2.58
Rank 5 2 2 1 1
Baseline(tf) 3.30 3.30 3.20 3.10 3.23
Manual 2.33 2.20 2.10 2.03 2.17
Ave. 2.73 2.84 2.70 2.80 2.77

Table 4. Evaluation results for Task B

Cshort Rshort Clong Rlong ALL
Sys1 2.93 2.70 2.53 2.80 2.74
Sys1(Rank) 8 3 2 1 2
Sys2 2.83 2.73 2.53 2.87 2.74
Sys2(Rank) 7 4 2 2 2
Manual 2.00 2.17 1.83 2.33 2.08
Ave. 2.73 2.83 2.77 3.08 2.85

A and Task B. In Table 3, which shows the results
for Task A, ‘C’ means the evaluation of ‘contents’,
‘R’ means ‘Readability’, and 20% and 40% are com-
pression ratios. The actual score of our system (Sys)
and rank among eight systems (Rank) are shown for
a baseline system using the term frequency (Base-
line(tf)) and a manually created summary (Manual).
The average scores (Ave.) among eight systems are
also shown.

In Task A, our system obtained better scores than
the baseline system at compression ratios of both 20%
and 40%. The 40% summaries showed better results
than the 20% summaries, probably because our sys-
tem is based on a sentence-extraction technique that
enables the generated summaries to preserve the struc-
ture of sentences in the original documents.

In Task B, we submitted two summary results. One
result was a summary without the category informa-
tion of the document set (Sys1), and the other was a
summary using the information (Sys2). The results are
shown in Table 4. The influence of the category infor-
mation was not clear. One reason for this was that the
NE program we used was not sufficient to annotate ex-
tended classes such as event and facility names. Since
the categorization module relies on the quality of the
NE annotation, we plan to improve the NE program so
that it will enable our categorization module to prop-
erly find key entities and NE classes. Another reason
was that we have only two methods that were selected
using the category information. We need to analyze
the characteristics of different document sets to find
suitable summarization methods in each category for
the document sets.

Proceedings of the Third NTCIR Workshop

4 Conclusion

We have implemented two modules in our sum-
marization system, which incorporates a sentence-
extraction technique, to allow it to summarize multi-
ple documents. One module is to estimate the sim-
ilarity between sentences, and the other is to cate-
gorize the given document sets. With this system,
we participated in both the single-document and the
multi-document summarization tasks at the TSC 2002.
While the module for categorizing document sets did
not improve our evaluation results for Task B, the sub-
jective evaluation using our results was better than the
baseline system.

As future work, we plan to improve the NE pro-
gram to enable our categorization module to properly
find key entities and NE classes since the quality of NE
annotation is critical to the performance of our catego-
rization module. We would also like to analyze the
characteristics of different document sets to find suit-
able summarization methods in each category for doc-
ument sets.

Acknowledgment

We thank Dr. Hirao of the NTT Cmputer Sceience
Laboratories for helping us to use the TSC dry run data
to set parameter values.

References

[1] C. Aone, M. E. Okurowski, J. Gorlinsky, and
B. Larsen. A Scalable Summarization System Using
Robust NLP. InProceedings of the ACL Work shop on
Intelligent Scalable Text Summarization, pages 66–73,
1997.

[2] H. Edmundson. New methods in automatic abstract-
ing. Journal of ACM, 16(2):264–285, 1969.

[3] S. Kurohashi and M. Nagao.Japanese Morphologi-
cal Analyzing System: JUMAN version 3.61. Kyoto
University, 1999.

[4] C.-Y. Lin. Training a selection function for extraction.
In Proc. of the CIKM’99, 1999.

[5] Madani. http://classes.seattleu.edu/computerscience/
csse470/Madani/ABCs.html. ABCs of Text Catego-
rization.

[6] K. R. McKeown, R. Barzilay, D. Evans, V. Hatzi-
vassilogou, M. Y. Kan, B. Schiffman, and S. Teufel.
Columbia Multi-Document Summarization: Ap-
proach and Evaluation. InOnline Proceedings of
DUC2001, 2001.

[7] C. NOBATA, S. SEKINE, M. MURATA, K. UCHI-
MOTO, M. UTIYAMA, and H. ISAHARA. Sentence
extraction system assembling multiple evidence. In
Proceedings of the Second NTCIR Workshop Meeting,
pages 5–213–218, March 2001.

[8] T. Nomoto and Y. Matsumoto. The Reliability of Hu-
man Coding and Effects on Automatic Abstracting (in
Japanese). InIPSJ-NL 120-11, pages 71–76, July
1997.

[9] M. Okumura and H. Nanba. Automated Text Summa-
rization: A Survey (in Japanese).Journal of Natural
Language Processing, 6(6):1–26, 1999.

[10] S. Sekine, K. Sudo, and C. Nobata. Extended Named
Entity Hierarchy. InProceedings of the LREC-2002
Conference, pages 1818–1824, 2002.

[11] TSC. http://oku-gw.pi.titech.ac.jp/tsc/. Text Summa-
rization Challenge.

[12] H. Watanabe. A Method for Abstracting Newspaper
Articles by Using Surface Clues. InProc. of COL-
ING’96, pages 974–979, 1996.

The Third NTCIR Workshop, Sep.2001 - Oct. 2002

