

NTCIR-3 WEB Experiments at Osaka Kyoiku University

— Towards Index Partitioning and Parallel Retrieval —

Takashi SATO Yukikazu KYO Kihei KOBATA

Osaka Kyoiku University
4-698-1 Asahigaoka, Kashiwara, Osaka, Japan

sato@cc.osaka-kyoiku.ac.jp

Abstract

Long gram-based indices are experimented at

NTCIR-3 WEB task. To make gram-based indices, no
analyses such as morphological ones are required. 2
byte characters extracted from NTCIR-3 ‘cooked’
version of WEB task corpus. The total index size is 26
Gbyte and time to make indices is about 18 hours.
Median search time per word from index is 197msec.
Ranking algorithm used is based on a traditional
probabilistic model. We report index partitioning
which we experimented. And we propose parallel
retrieval.
Keywords: gram-based index, gram coding, index
partitioning, parallel retrieval, NTCIR

1 Introduction

Retrieval using search engines is one of most
common way to find target WEB pages. And there
are many well-known search engines in the world.
NTCIR-3 WEB task is notable because it regards
WEB search as retrieval task. Since the size of
NTCIR-3 WEB task corpus is very large, this task is
interesting from the point of realization itself of large
retrieval system.
 When we retrieve web pages, we can find words in
mind well using full text retrieval systems than
keyword retrieval systems. Among full text retrieval
systems, systems whose indices are based on suffix
array [1-5] or grams [6-10] are effective, we think,
since every character sequences which include words,

compound word, etc. are retrievable. In making
indices, they need no dictionary and no
morphological analyses.

In order to make suffix array efficiently, we have

to put corpus on computer main memory. So one
problem of suffix array is that we can not make
indices for big corpus.

The size of corpus for NTCIR-3 WEB is 10 and
100Gbyte, which is far bigger than that of former
NTCIR tasks. Since this size exceeds main memory
capacity of most computers, it is impossible to make
suffix array indices practically.
 On the other hand, general gram-based indices are
thought to have following problems.
(1) The size of index becomes huge when gram
length is more than 3 for Japanese corpus.
(2) Word retrieval requires not only search for grams ,
which compose the word, but also computation of
intersection over searched sets. Then it becomes slow.

Our group has made gram-based indices [11-13]
for large corpus. We report in this manuscript that our
indices do not have the above problems.

When an index becomes large, index partitioning is
a worthy to try approach, we think. Making,
retrieving and managing index become easy by this
approach. Moreover processing time will decrease
considerably since it enables parallel processing. We
report index partitioning, which we tried at this task.

2 Index making

We compute gram as [14], document by document.
We made an index as an inverted file of gram. During
index making, we sort gram. We cannot put the entire
corpus in main memory at one time since the corpus
of this task exceeds main memory size. We first made
batch indices by internal sorting algorithm from

subsets of corpus, which fit in main memory. Batch
indices are merged into partitioned indices in batch
order. At this task, five partitioned indices constitute
the entire index. For each partitioned index, we made

© 2003 National Institute of Informatics

Proceedings of the Third NTCIR Workshop

wide range map of gram values, which are put in
main memory when we search grams.

At this task, most grams constitute 4 or 5
characters, and they are coded into wg=6 byte. That is,
a gram has almost same length as 3-gra m if not coded.
Computer used is Sun Blade 100 (2GB main
memory).

Table 1 shows the size of corpus, cooked (prepared
by organizer), trimmed (extracted 2 byte characters
from cooked) and indices for 10 and 100Gbyte
corpus. Index size overhead against trimmed is 173
and 165% respectively. Table 2 shows time to make
indices. Numbers (0...4) in part# row below
100Gbyte indicates the number of partitioned indices.

Table 1. Size of corpus, cooked, trimmed and index

corpus 10Gbyte 100Gbyte

cooked
trimmed

4.86Gbyte
1.69Gbte

39.2Gbyte
15.5gbyte

part# total 0 1 2 3 4 total

index size 2.95Gbyte 4.6 5.6 5.4 5.1 4.9 25.6Gbyte

Table 2. Time to make index

corpus 10Gbyte 100Gbyte

part# total 0 1 2 3 4 total

time 3.1hr 3.2 3.9 3.7 3.5 3.3 17.7hr

3 Query making

We extract query words using morphological
analysis from TITLE and/or DESK tags in given 56
topics (0008-0063). Compound words are segmented

in words, and then all possible combinations of words
are made of a compound word.

In this task, we set essential words [14]. Plural
words can be essential in OR, considering we can set
synonyms.

4 Index Searching and Document
Ranking

Each partitioned index has three parts called root,
leaf and locator. Grams are sorted and stored in
secondary storage as leaf. There is a pointer from a
gram in leaf to a bucket, which stores the document
numbers where the string corresponding to the gram
is found. Locator, which is stored in secondary

storage, is collection of buckets. Root, wh ich is put in

main memory when searching, is a wide range map
of grams.

The search algorithm is explained in terms of three
cases according to the relation between the length of
search key word (lk) and gram length (lg). Figure1

(a), (b) and (c) show how to follow the pointers in
leaves and locators when lk = lg, lk < lg and lk > lg
respectively. Since the buckets of the locator are
stored sequentially, they are drawn in one box and
separated by double lines.

Our index has tree structure, which has sorted
gram and wide range map of them. So, not only query
words whose length is equal to gram length, but also
shorter or longer words can be searched efficiently.
When we search a longer word, every gram in the
words is searched. Then retrieved sets of document
numbers are intersected

From set of retrieved documents for query words,
we compute tf-idf and similarity using probabilistic
model [15] for document ranking. Table 3 shows

retrieval time including ranking.

The Third NTCIR Workshop, Sep.2001 - Oct. 2002

 (a) lk = lg (b) lk < lg (c) lk > lg

Figure 1. Index search

Table 3. Retrieval time

corpus 10Gbyte 100Gbyte

retrieval words 299 299x5
time to search all words 54.3sec 639sec

search time per word (average, median) (182msec, 25.8msec) (427msec, 197msec)

retrieval time per query 58.5sec 287sec

6 Discussions

We realized that to make large index in itself was
difficult. For example, the access to a large file
(>20Gbyte) is not efficient on UNIX file system. We
made five sets of partitioned indices in the order of
documents number. By partitioning index, not only
index making but also document management
becomes easier. We sought words and ranked
documents set by set. Then we merged five ranked
results.

Although we did not experiment at this task, the
parallel processing of index making, word search and
document ranking become possible. The sequential
processing will remain in the merge part, however,
we expect speed up of entire processing. So, parallel
processing will be promising approach for large

indices.

7 Conclusions

We experimented our long gram-based indices at
NTCIR-3 WEB task. Since our indices are based on
grams, no analyses such as morphological ones are
required. We made an index from 2 byte characters
extracted from NTCIR-3 ‘cooked’ version of WEB
task corpus. The total index size is 26 Gbyte and time
to make indices is about 18 hours. Median search
time per word from index is 197msec. Ranking
algorithm used is based on a traditional probabilistic
model. We report index partitioning which we
experimented. And we propose parallel retrieval.

leaf

text

leaf

text

locator

text text text text

text ftra
ftrb ftsa

ftra ftra ftrb

doc#s

locator

leaf

text search

sear earc arch

locator

ftr

Proceedings of the Third NTCIR Workshop

References

[1] Gonnet, G., Baeza-Yates, R. and Snider, T., New Indices

for Text: Pat Trees, in Information Retrieval: Data

Structure & Algorithms chapter 5, Frakes, W. and

Baeza-Yates, R. Ed., pp. 66-82 (1992).

[2] Shang, H. and Merrett T., Trees for approximate string

matching, IEEE Trans. Knowledge and Data Eng., Vol. 8,

No. 4, pp. 540-547 (1996).

[3] Itoh, M., An Efficient Method for Constructing Suffix

Arrays of Large Texts, IPS Japan SIG Notes,

99-NL-129-5 (1999).

[4] Yamashita, T., Fujio M. and Matsumoto Y., Language

Independent Tools for Natural Language, Proc. 18th

ICCPOL, pp.237-240 (1999).

[5] Ferragina, P. and Grossi, R., Fast string searching in

secondary storage: Theoretical developments and

experimental results, Proc. ACM-SIAM Symposia on

Discrete Algorithms, Vol. 7, pp. 373-382 (1996).

[6] Ogawa, Y. and Iwasaki, M., A new character-based

indexing method using frequency data for Japanese

documents, In Proc. 18th ACM SIGIR Conf., pp. 121-129

(1995).

[7] Sugaya, N. et al., A full-text search system for large

Japanese text bases using n-gram indexing method, Proc.

53th Annual Convention IPS Japan, 5T-2,3 (1996).

[8] Akamine, S. and Fukushima, T., Flexible string

inversion method for high-speed full-text search, Proc.

Advanced Database Symposium '96 (1996).

[9] Matsui K., Namba, I. and Igata, N., Full-text searching

engine for large-scale data, Proc. 1997 IEICE General

Conference, D-4-6 (1997).

[10] Kikuchi, C., A fast full-text search method for

Japanese test database, Trans. IEICE, Vol. J75-D-1, No.

9, pp. 836-846 (1992).

[11] Sato, T., Fast full test search with free word using

TS-file, Proc. 19th ACM SIGIR Conf., p.342 (1996).

[12] Sato, T., Fast full test retrieval using gram based tree

structure, Proc. ICCPOL '97, Vol.~2, pp. 572--577

(1997).

[13] Sato, T. et al., Gram based full test search system and

its application, IPSJ SIG Notes, 98-DBS-114-2 (1998).

[14] Sato, T, et al., NTCIR-3 PAT experiments at Osaka

Kyoiku university, in this proceedings.

[15] Robertson, S.E. and Walker, S., Some simple effective

approximations to the 2-Poisson model for probabilistic

weighted retrieval, Proc. 17th Int. Conf. Research and

Development in Information Retrieval, pp. 232-241

(1994).

The Third NTCIR Workshop, Sep.2001 - Oct. 2002

