
NTT’s Question Answering System for NTCIR QAC2

Hideki Isozaki
NTT Communication Science Laboratories

NTT Corporation
2-4 Hikari-dai, Seika-cho, Soraku-gun, Kyoto, 619-0237, Japan

isozaki@cslab.kecl.ntt.co.jp

Abstract

In order to retrieve best documents for finding an-
swers, we developed a robust proximity search engine.
It efficiently finds relevant passages. In addition, our
search engine has two disjunction operators: or and
or2. The former works just like addition, whereas the
latter works just like logical disjunction. The operator
or2 is used to introduce synonyms and antonyms of
a query term. The search engine also outputs the dis-
tribution of query terms in retrieved documents. Our
QA system based on the search engine showed a good
performance for QAC2 task1: MRR = 0.607 and Top
5 = 0.738.
Keywords: question answering, information retrieval

1 Introduction

Our question answering system SAIQA1 follows
a standard architecture for open-domain question an-
swering. First, the system analyzes a given question
and then determines an expected answer type. Sec-
ond, relevant documents (or passages) are retrieved.
Third, answer candidates are extracted and ranked.
The system employs ALTJAWS, a morphological an-
alyzer based on Nihongo Goi-Taikei [5].

Following QAC1 [11], we discovered various prob-
lems with SAIQA-Ii.

• SAIQA-Ii’s rule-based question analyzer em-
ployed a simple right-to-left longest match. It
turned out that the analyzer fails when unex-
pected adverbial expressions are inserted into a
question. In addition, the number of answer types
was not sufficient.

• SAIQA-Ii’s search engine ranked paragraphs by
using a variant of the standard TF-IDF method.

1SAIQA stands for ‘System for Advanced Interactive Question
Answering’.

It turned out that short passages that contain im-
portant query terms are sometimes split into dif-
ferent paragraphs. For instance, a news article’s
headline is a paragraph, and the next sentence is
another paragraph. Because of this, the search
engine sometimes failed to find a very impor-
tant passage. Another problem is the length of
a paragraph: since longer paragraphs tend to con-
tain more query terms, they were preferred to
shorter paragraphs. Introduction of synonyms
and antonyms for the search caused yet another
problem, because a paragraph that contains only
one original query term and its synonyms some-
times obtains a better score than another para-
graph that contains two or more different query
terms.

• SAIQA-Ii’s answer evaluation module employed
a Hanning window for density calculation. The
density is calculated by using the number of
words between the candidate and query terms
found in the retrieved document. If an answer
candidate is next to a long noun phrase such as an
organization name, the distance between the can-
didate and query terms are overestimated. Verbs
are often followed by auxiliary verbs (Jodoushi)
and suffix words (Setsubigo). This also increases
the distance unintentionally.

Through examining these problems, we have devel-
oped a new system, SAIQA-QAC2. First, we present
its search engine, which uses a new passage evaluation
algorithm. We, then, describe other improvements.

2 Proximity-based Document Retrieval
Engine

Since it turned out that paragraphs are unreliable,
we gave up using the paragraph retrieval system. It is
well known that the dense distribution of query terms
is a good hint for finding answers. Many QA systems
use fixed-size windows such as 300 words or three sen-
tences. However, if the window size is too small, the

Proceedings of NTCIR-4, Tokyo, April 2003 - June 2004

© 2004 National Institute of Informatics

window will not cover many query terms, and if the
window size is too large, passage scores will not reflect
the density distribution. Therefore, we do not want to
fix the window size.

During our research, we came upon Sadakane’s
proximity search algorithm [9]. According to this
method, each document is evaluated by the length
of the shortest passage that contains all query terms.
(Shorter is better.)

However, it turned out that the system often failed
to find relevant documents in the following cases.

• No documents contain all query terms.

• One or more query terms are far from other query
terms.

Harabagiu et al.[2] used various feedback methods to
avoid similar problems. However, we do not employ
feedback because it complicates the system’s behavior.

Here, we decided to use disjunctions of query terms
instead of their conjunctions. If one asks “Who is the
President of the US?,” the question is converted to a
search query President or US instead of Pres-
ident and US. The disjunction operator or works
just like addition of IDFs. In the first pass, documents
are ranked by the sum of IDFs. In the second pass,
documents are reranked by best passage scores.

The second pass is similar to the answer evaluation
process. At this stage, however, we do not have an-
swer candidates, therefore, we will have to evaluate all
possible passages. Suppose that a document D con-
tains ND words. Then, the number of passages in a
document D is O(ND

2). In order to evaluate these
passages, we have to enumerate all query terms in the
passages. Therefore, a naive implementation will be
O(ND

3). Such a system would be very slow because
ND can be very large. In this paper, we present a more
efficient algorithm to get the best passage score in the
document.

Another problem is that of paraphrasing. Since
ALTJAWS’ dictionary has normal forms of nouns,
“girisha” (Greece) is normalized to “girishia.” The
Japanese word “megane” (eyeglasses) in hiragana is
normalized to “megane” in Chinese characters. How-
ever, this normal-form data is far from complete. For
instance, “bei” and “beikoku” are alternative expres-
sions of “amerika” or the United States of America,
but ALTJAWS does not have their normal forms. In
addition, antonyms are useful for finding paraphrases.
(e.g., Ann is the wife of Bob = Bob is the husband of
Ann.) Therefore, we want to add related terms to a
query, but it is sometimes detrimental to add related
terms. Therefore, we add an extra logical operator
or2 to indicate alternatives.

2.1 An efficient document-scanning algo-
rithm

Here, we present a more efficient algorithm that is a
modification of Sadakane’s algorithm. This algorithm
scans a document and finds the best-scored passage.

A passage is represented by a pair of integers [l, r]
where l is the location of the first word of the passage
and r is the location of the last word. Passage p’s score
is denoted S(p). If passage p0 is contained in passage
p1 and p0 is not equal to p1, we denote this as p0 @

p1. Query terms are denoted q1, . . . , qk. w[qj] is a
predefined non-negative score of qj . In addition, Q(p)
is the set of all query words that appear in passage p.
PL[qj][h] stands for the h-th position of qj in D.

Since shorter is better, we assume the following
monotonicity for efficiency.

If p0 @ p1 and Q(p0) = Q(p1) holds,
S(p0) > S(p1) holds.

For instance, the next definition satisfies this as-
sumption for β > 0.

S([l, r]) = exp(−β(r − l))
∑

qj∈Q([l,r])

w[qj]

Here, we call this “Decayed IDF” or DIDF.
Passage p is Q-minimal if and only if there is no

passage p′ that satisfies p′ @ p and Q(p′) = Q(p).
Our algorithm finds Q-minimal passages in [1, N].

The algorithm scans from left to right, with the ini-
tial window being the minimum passage that covers
the leftmost positions of all query terms that appear in
the document D. Suppose D has kD(= |Q([1, N])|)
query terms.

• For each query term qj ∈ Q([1, N]), obtain its
position list PL[qj].

• Merge and sort all PL[qj]s to make a single list
all. The number of elements in all is denoted
nD. The i-th word in all is denoted allQ[i]
and its position is denoted allP[i].

Then, the window moves right. Figure 1 shows an
example. In this example, Q([1, N]) is {a, b, c, d, e}
and non-query terms are disregarded. The initial po-
sition of the window is indicated by “()” in Step 0.
In Step 1, the leftmost element “a” is removed and the
next position of “a” is employed instead. In Step 2, the
leftmost element “c” is removed and the next position
of “c” is employed. In this way, the window moves
right until it reaches the end of all.

Each location of the window contains different pas-
sages. However, we consider only prefix passages that
are prefixes of the window, with Table 1 shows. Since
other passages in the window will be covered later,
they are outside the scope of consideration for now.
The number of Q-minimal prefix passages is at most
kD.

Step all
0 (a c a d b a d e) c a d b c b
1 a (c a d b a d e) c a d b c b
2 a c (a d b a d e c) a d b c b
3 a c a (d b a d e c) a d b c b
4 a c a d (b a d e c) a d b c b
5 a c a d b (a d e c a d b) c b
6 a c a d b a (d e c a d b) c b
7 a c a d b a d (e c a d b) c b

“()” indicates the location of the window.

Figure 1. Movement of the window

Table 1. Prefix passages in a window
query terms Q-minimal last elem.

Window a c d b c d e
Prefix a Yes a
passages a c Yes c

a c d Yes d
a c d b Yes b
a c d b c No
a c d b c d No
a c d b c d e Yes e

Suppose the number is larger than kD. Then,
prefix passages P1 and P2 have the same
query term qj at the end of the passages be-
cause D has only kD different query terms.
Without loss of generality, we can assume
that P1 is a prefix of P2. Since P2 has two
qjs, the last element of P2 is redundant. That
is, P2 is not Q-minimal. Therefore, the num-
ber of Q-minimal prefix passages is at most
kD. �

Accordingly, each prefix passage in a window can
be identified by its last element, a fact we can use for
efficient updates.

Figure 2 shows the proximity search algotithm
whose time complexity to process D is O(kDnD +
nD log nD), which is less than O(nD

2). We can make
it faster by using Q-minimality. In Table 2, we do
not have to calculate scores of long passages that start
with“a c d a” because it violates Q-minimality. This
algorithm was incorporated into LISTA, an XML-
based search engine [3].

2.2 Alternatives of a query term

Some query terms have several alternatives. For ex-
ample, in the search to answer the question,

Who is the father of Miu Sakamoto?

we can use various alternative terms such as child,
daughter, son, first-son, second-son, and first-

Initialization of the window
win = []; # window
DS = 0; # document score
foreach q in Q([1,N]) {

insert(PL[q][0],win);
}
The window moves right.
for (L := 0; L <= n; L := L+1) {
ql := allQ[L]; # leftmost term
pl := allP[L]; # its position
WS := 0; # sum of weights
foreach R in (win) { # passage

qr := allQ[R];
pr := allP[R];
WS := WS + w[qr];
S := WS * exp(-beta*(pr-pl));
if (DS < S) { DS := S; }

}
shift(win);
shift(PL[ql]);
if (PL[ql] != []) {

insert(PL[ql][0],win);
}

}

insert(e,L) inserts an integer e into the integer list L
that is sorted in ascending order.
shift(L) removes the first element of L.
DS is the best passage score in the document.

Figure 2. An algorithm for the proximity
search engine

Table 2. More efficient evaluation
We do not have to evaluate prefix passages

that start with “a c d a.”
query terms Q-minimal last elem.

Window a c d a c d e
Prefix a Yes a
passages a c Yes c

a c d Yes d
a c d a No
a c d a c No
a c d a c d No
a c d a c d e No e

daughter. Introduction of these terms is sometimes
detrimental because articles that have nothing to do
with Miu Sakamoto may obtain good scores. There-
fore, we introduce a new operator or2.

Figure 3 shows the output of the engine for a ques-
tion:

Who is the wife of President Clinton?

Each line corresponds to a document and has four el-
ements. The first element is the best passage score
(DS). The second element is the document’s name.
The third element is a list of query terms, their IDFs,
and their positions. The forth element is a list of best
passages and their scores.

The question analyzer extracts three query terms:
wife, president, and clinton. Then, the
QA system adds husband to wife as an alterna-
tive query term. Therefore, the QA system sends a
query “(wife or2 husband) or president
or clinton” to the search engine. The new dis-
junction A or2 B identifies B with A and merges
PL[B] into PL[A]. Extended A’s IDF is set to the
minimum of A’s IDF and B’s IDF.

If we use “wife or husband,” a passage such
as “Your wife/husband is ...” obtains a
good score because this passage contains two query
terms: wife and husband. On the other hand, if
we use “wife or2 husband,” the system identi-
fies husband with wife. Therefore, this passage
contains only one query term: wife, and the repe-
tition of a query term does not increase the passage
score at all. In this way, or2 reduces problems caused
by introducing alternative terms.

According to Figure 3, the best-scored document
990804244 contains clinton, president, and
husband.

3 Other improvements

3.1 Question analysis

SAIQA-Ii used a right-to-left longest pattern
matcher. It fails when unexpected adverbial expres-
sions are inserted. In the next question, the matcher
failed because an adverb oyoso (approximately) was
unexpected.

Rule: daigaku wa ikutsu → Number of Uni-
versities
Question: Nihon ni daigaku wa oyoso ikutsu
arimasu ka?
(Approximately how many universities are
there in Japan?)

Although some adverbial expressions are long, this
problem can be solved when we use a parser or a de-
pendency analyzer. Our abduction-based QA system,
SAIQA-Is [10], used a Japanese-to-English translation
system ALT-J/E [6] for parsing. Here, we have em-
ployed a simpler approach. We implemented a new
question analyzer that finds the question word ikutsu
(how many) and the focus word daigaku (university)
separately. Now, adverbial expressions do not affect
question analysis.

In addition, we increased the number of answer
types: SAIQA-Ii had about 80 types, whereas SAIQA-
QAC2 has 189.

3.2 Answer extraction

Although we added about one hundred answer
types, we changed Named Entity Recognizers very lit-
tle. We used an SVM-based Named Entity Recognizer
[7] that achieved F = 90% for IREX general task [12].
Although SVM is often criticized for its inefficiency,
this recognizer runs at 62 KB/sec on a 2.8-GHz Pen-
tium 4 Linux PC. We did not change this module at
all. This recognizer finds only eight IREX named enti-
ties: ORGANIZATION, PERSON, LOCATION, AR-
TIFACT, DATE, TIME, MONEY and PERCENT. As
for numerical expressions, we wrote 300+ rules for 53
answer types. This recognizer was slightly improved.

We also use name lists (or gazetteers). For instance,
prefectures in Japan can be enumerated, and such lists
are useful to improve accuracy for some answer types.
However, we used only three lists (COUNTRY, PRE-
FECTURE, and STATE).

Candidates for other answer types are dynamically
generated. For instance, MMDD (month & day) is
a subclass of DATE. MMDD inherits answer candi-
dates from DATE but rejects candidates that do not in-
clude “month” or “day.” Answer candidates for BIRD,
REPTILE, etc. are extracted by using Nihongo Goi-
Taikei’s word senses. Goi-Taikei classifies 350,000
words into about 3,000 categories.

score document term(IDF),positions passage[score]
16478 990804244 clinton(1.91),83:president(1.43),7,85:husband(1.70),82,282 82-85[16478],...
16478 990717256 clinton(1.91),241,459,603:president(1.43),242:husband(1.70),239 239-242[16478],
16071 980316J1TYEUB0400010 clinton(1.91),3,25,175,395:president(1.43),5,27,43,88,116,...
15911 980819276 clinton(1.91),17,62:president(1.43),19,63,105,181,211,247,266:husband(1.70),..

Question: Who is the wife of President Clinton?

Figure 3. Example output of the proximity search engine

Candidates are obtained by using several methods
such as:

• Inheritance: Since it is not clear whether a hospi-
tal is an organization or a location, we introduce
a new answer type, HOSPITAL. The next rule
means that HOSPITAL inherits candidates from
ORGANIZATION and LOCATION.

HOSPITAL -> ORGANIZATION LOCATION

• Complex noun phrases: For instance, RULE’s
candidates are complex noun phrases that end
with a word whose sense is “statute,” “regula-
tion,” “law,” or “treaty” according to Nihongo
Goi-Taikei.

• Quoted expressions: The next sentence indicates
that “Yukiguni” is a novel.

His novel “Yukiguni” was . . .

• Unknown words: It is difficult to classify un-
known foreign words such as “farfalle.” These
words are accepted by FOOD or INSECT as can-
didates.

Then, a filter is used to reject inappropriate candi-
dates. For instance, the next rule means that any candi-
date that ends with the suffix “iin” (clinic) is accepted
as HOSPITAL.

iin : HOSPITAL

Since HOSPITAL is a subclass of FACILITY, a
clinic is also accepted as a candidate of FACILITY.
However, it is not accepted as a candidate of AQUAR-
IUM, which is not an upper class of HOSPITAL. Fig-
ure 4 shows this part of the answer type taxonomy.

3.3 Answer ranking

We tried to keep our scoring function as simple as
possible to make the system comprehensible. Candi-
date c’s score is given by a weighted Hanning window
function2 [4] defined as follows:

score(c) =
∑

qj∈Q

w[qj]H(d(c, qj)),

2Since our search engine also uses a distance-based score, it
seems redundant to use another distance-based scoring function.
This is our future work.

WARD

AQUARIUM HOSPITAL

FACILITY

INTRACITY

Figure 4. A part of the answer type tax-
onomy

where d(c, qj) is the distance between c and the near-
est position of qj , and

H(d) =

{

1
2 (cos(π d/W) + 1) if 0 ≤ d ≤ W,
0 otherwise.

SAIQA-Ii used the number of words as the distance,
whereas SAIQA-QAC2 used the number of bunsetsus.
A bunsetsu is a basic linguistic unit in the Japanese
language. Several words are contained in a bunsetsu.
The bunsetsu distance seems more natural than the
word distance. It is not clear what is a word in
Japanese because no inter-word space is used. On
the other hand, bunsetsu is relatively clear and corre-
sponds to semantic roles.

Some articles look like entries of a dictionary; that
is, an article’s body is a description of a headword
given in the headline. The headword is rarely men-
tioned in the body because it is obvious. Suppose the
headword is a correct answer to a question and query
terms in the body are far from the headline. The an-
swer will not obtain a good score. However, we can
detect such articles by using simple patterns. For these
articles, the distances between answer candidates and
query terms are assumed to be zero.

4 Results

Table 3 shows the stepwise evaluation of the sys-
tem. According to this table, question analysis is es-
sential to question answering. We observed a similar
tendency when we analyzed our QAC1 system, lead-
ing us to greatly improve the question analysis mod-
ule. Table 4 shows causes of failure of some questions

Table 3. Stepwise evaluation of the sys-
tem

Ans. Type Search Answer rank #Qs
Correct OK 1 96
Correct OK 2–5 44
Correct OK Failed 25
Correct Failed Failed 1
Wrong OK 1 4
Wrong OK Failed 25

Accuracy

W = window size
20 30 40 60 75 90 120

•

•

[•]

[•]

•

•

•

•

bunsetsu MRR

bunsetsu Top5

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

word MRR

word Top5

0.57
0.59
0.61
0.63
0.65
0.67
0.69
0.71
0.73
0.75

bunsetsu = distance is the number of bunsetsus
word = distance is the number of words

[•] = submitted version

Figure 5. Effects of distance unit and win-
dow size

that SAIQA-QAC2 could not answer. This table also
shows that question analysis is essential.

Table 6 shows the performance of DIDF. #Qs is the
number of answerable questions (lenient evaluation) 3.
For 76% of the questions, the first ranked documents
contained correct answers.

Table 5 compares Top 5 scores and MRR scores of
QA systems based on different retrieval systems. when
we use only top 3 or top 5 documents in a simplified
version of the QA system. According to this table,
DIDF performs better than MultiText [1] or IDF. We
will compare DIDF with Okapi BM25 [8] and Multi-
Text more extensively in the full paper.

Figure 5 compares bunsetsu distance and word dis-
tance for answer evaluation in terms of MRR. Accord-
ing to this graph, word distance gives better MRR
scores while bunsetsu distance gives better Top 5
scores. When we used word distance, W = 60 yielded
MRR = 0.622.

3Numbers in the old version of this manuscript was incorrect. It
was evaluated by a human subject, but alternative correct answers
were not checked. Here, the evaluation was automatically done by a
program.

Table 4. Failure causes
006 Paraphrase or distance
007 Abbreviation
008 Anaphora to a part of an address
017 Question analysis (Wrong type for “privilege”)
024 Question analysis (Wrong type for “equipment”)
025 Question analysis (Wrong type for “predecessor”)
026 Question analysis (“Nickname” was removed)
035 Question analysis (Ambiguity of “what”)
037 Question analysis (Wrong type for “record”)
051 Answer extraction (Strip)
063 Paraphrase or distance
067 Question analysis (Ambiguity of “what”)
068 Answer extraction (An unfamiliar fish name)
075 Paraphrase (die)
078 Answer extraction (Unusual “average lifespan”)
098 Question analysis (Wrong type for “class”)
119 Question analysis (Particle towa)
129 Morphological analysis (Wrong part-of-speech tag)
133 Question analysis (Relative noun koto)
138 Named entity recognition (Chinese location name)
148 Answer extraction (3-liter car)
153 Question analysis (Unusual usage of doko)
154 Question analysis (Relative noun koto)
155 Misleading term (Character)
159 Answer evaluation (New laws)
161 Named entity recognition (Eva Braun)
162 Question analysis (Particle towa)
172 Question analysis (Ambiguous word tokoro)

κ

Top5

MRR
0.60

0.65

0.70

0.75

0.0
•

◦

0.3
•

◦

0.5
•

◦

0.6
[•]

[◦]

0.7
•

◦

•

◦

0.8

•

◦

•

◦

0.9
•

◦

[•] and [◦] : submitted version.

Figure 6. Effect of the cutoff parameter

SAIQA-QAC2 examines only high-scored docu-
ments. If a document’s score is lower than κ times the
best document score, it is not examined at all. This
cutoff parameter was introduced for efficiency. We
used κ = 0.6 in the formal run, but it turned out that
κ = 0.8 gives a better score: MRR = 0.614 and Top 5
= 0.754. That is, we can discard more documents.

5 Concluding Remarks

We developed a robust proximity search engine that
has two disjunction operators. Our system based on
the search engine showed a good performance for
QAC2 task1. We found that slight modifications of
a few parameters yielded better scores.

Table 5. QA performance of different retrieval systems
MultiText IDF β = 10−2 0.005 10−3 10−4

R = 3 Top 5 0.651 0.641 0.662 0.677 0.651 0.631
MRR 0.568 0.544 0.554 0.581 0.572 0.537

R = 5 Top 5 0.677 0.667 0.672 0.692 0.692 0.667
MRR 0.579 0.560 0.573 0.594 0.596 0.571

Table 6. Performance of the proximity search engine

#Qs is the number of questions that can be answered by the top documents.
%Qs is its percentage in the 195 questions.

Document rank 1 ≤2 ≤3 ≤5 ≤10 ≤20 ≤100
#Qs 148 165 177 183 188 193 194

%Qs 75.9% 84.6% 90.8% 93.8% 96.4% 99.0% 99.5%

References

[1] C. L. A. Clarke and E. L. Terra. Passage retrieval vs.
document retrieval for factorid question answering. In
Proceedings of the 26th Annual International ACM SI-
GIR Conference on Research and Development in In-
formation Retrieval, pages 427–428, 2003.

[2] S. Harabagiu, D. Moldovan, M. Pasca, R. Mihal-
cea, M. Surdeanu, R. Bunescu, R. Girju, V. Rus, and
P. Morarescu. The role of lexico-semantic feedback in
open-domain textual question-answering. In Proceed-
ings of the 39th Annual Meeting of the Association for
Computational Linguistics, pages 274–281, 2001.

[3] Y. Hayashi, G. Kikui, and J. Tomita. Searching text-
rich XML documents with relevance ranking. In Pro-
ceedings of SIGIR 2000 Workshop on XML and Infor-
mation Retrieval, 2000.

[4] T. Hirao, Y. Sasaki, and H. Isozaki. An extrinsic
evaluation for question-biased text summarization on
QA tasks. In Proceedings of the Workshop on Au-
tomatic Summarization, The Second Meeting of the
North American Chapter of the Association for Com-
putational Linguistics, pages 61–68, 2001.

[5] S. Ikehara, M. Miyazaki, S. Shirai, A. Yokoo,
H. Nakaiwa, K. Ogura, Y. Ooyama, and Y. Hayashi.
Goi-Taikei — A Japanese Lexicon (in Japanese).
Iwanami Shoten, 1997.

[6] S. Ikehara, S. Shirai, K. Ogura, A. Yokoo, H. Nakaiwa,
and T. Kawaoka. ALT-J/E: A Japanese to English
machine translation system for communication with
translation. In Proceedings of IFIP World Computer
Congress, pages 80–85, 1994.

[7] H. Isozaki and H. Kazawa. Efficient support vector
classifiers for named entity recognition. In Proceed-
ings of COLING-2002, pages 390–396, 2002.

[8] S. E. Robertson and S. Walker. Okapi/keenbow at trec-
8. In Proceedings of the Eigth Text Retrieval Confer-
ence, pages 151–162, 1999.

[9] K. Sadakane and H. Imai. Fast algorithms for k-word
proximity search. In IEICE Transactions on Commu-
nications/Electronics/Information and Systems, vol-
ume E84-A, pages 312–319, 2001.

[10] Y. Sasaki. Question answering as abduction: A feasi-
bility study at NTCIR QAC1. IEICE Transaction on
Information and Systems, E86-D(9):1669–1676, 2003.

[11] Y. Sasaki, H. Isozaki, T. Hirao, K. Kokuryou, and
E. Maeda. NTT’s QA systems for NTCIR QAC-1. In
Working Notes of the Third NTCIR Workshop Meet-
ing, Part IV: Question Answering Challenge (QAC1),
pages 63–70, 2002.

[12] S. Sekine and Y. Eriguchi. Japanese named entity ex-
traction evaluation — analysis of results —. In Pro-
ceedings of 18th International Conference on Compu-
tational Linguistics, pages 1106–1110, 2000.

