A Decade after TREC-4 NTCIR-5 CLIR-J-J Experiments at Yahoo!Japan

9 Dec 2005 Sumio FUJITA Yahoo Japan Corporation

Introduction

- Automatic feedback from top k documents strategy
 - Dates back to the TREC-2.
 - Was especially successful in the TREC-4.
- As much as +41.7% gain in NTCIR-5 CLIR-J-J
 - our best official TITLE only run vs its no feedback baseline run
 - This is really exceptional!

A Retrospective Study of the top k document feedback strategy

- TREC-2(1993)
 - w*r/R(Okapi), Thesaurus Extaction(Claritech), wpq(UCLA)
- TREC-3(1994)
 - Elimination of "concepts" fields accelerates feedback strategies.
 - Okapi: "unexpectedly successful" improvement of 19.1% by 40terms from 30 documents
- TREC-4(1995)
 - SMART: +27% improvement by 50 single terms and 10 phrases from 20 documents
 - PIRCS: +29% improvement by expanding with 50 terms from 40 subdocuments

Test collection	MAP	PFB	MAP	PFB
	Rigid	Gain %	Relax	Gain%
NTCIR-1	0.3596	+11.4	-	-
Adhoc	0.3227		-	
DESC run				
NTCIR-3	0.3930	+19.4	0.4502	+17.5
CLIR J-J	0.3292		0.3830	
TITLE query	l	J		
Rigid /Relax				
NTCIR-4	0.3801	+23.0	0.4711	+19.1
CLIR J-J	0.3090		0.3956	
TITLE query				
Rigid /Relax				
NTCIR-3	0.3283	+15.4	0.3209	+14.2
Patent	0.2846		0.2811	
Desc query				
A / AB				
NTCIR-4	0.2508	+9.5	0.1655	+6.8
Patent	0.2290		0.1549	
Claim query				
A / AB				
TREC-9	-	-	0.2028	+15.8
Web	-		0.1751	
Title run				
TREC-2001	-	-	0.2060	+20.9
Web	-		0.1704	
Title run				
TREC 2004	0.3695	+4.8	0.4075	+4.1
MEDLINE	0.3526		0.3915	
Long query				
DR /DR+PR				

2005/12/9

System description

- YLMS evaluation experiment system based on Lemur toolkit 2.0.1[Ogilvie et al. 02] for indexing system
- Indexing language:
 - Chasen version 2.2.9 as Japanese morphological analyzer with IPADIC dictionary version 2.5.1
- Retrieval models:
 - TF*IDF with BM25 TF
 - KL-divergence of probabilistic language models with Dirichlet prior smoothing[Zhai et al. 01]
- Rocchio feedback for TF*IDF and mixture model feedback method for KL-divergence retrieval model [Zhai et al. 01]

Language modeling for IR

 $p(d \mid q) \ \propto \ p(d) p(q \mid d)$

• Dirichlet-Prior method smoothing methods

$$p_{\mu}(\mathbf{w} \mid \mathbf{d}) = \frac{\text{freq}(\mathbf{w}, \mathbf{d}) + \mu p(\mathbf{w} \mid \mathbf{C})}{\mid \mathbf{d} \mid + \mu}$$

2005/12/9

CLIR J-J experiments

- Title or Description Only runs: simple TF*IDF with a top k document feedback strategy
- Title and Description runs: Fusion of Title run and Description run
- Post submission: KL-divergence runs(Dirichlet smoothing, KL-Dir) with/without feedback

$$w(d,t,kl,b,k4) = (k4 + \log \frac{N}{df(t)}) \frac{(kl+1) \operatorname{freq}(d,t)}{kl((l-b) + b \frac{dl_d}{avdl}) + \operatorname{freq}(d,t)}$$

d : document

t : term

N : total number of documents in the collection

df(t): number of documents where t appears

freq(d,t): number of occurrence of t in d

k1, k4, b : parameters 2005/12/9

Recall-precision curves NTCIR-5 CLIR-J-J VS NTCIR-4 CLIR-J-J

Title only run feedback / baseline effectiveness BM25 TF*IDF / KL-Dir

	MAP-R	RP-Rigi	Rel-	P@10	P@20	MAP-R	RP-rela	Rel-	P@10	P@20
	igid	d	Ret			elax	Х	Ret		_
YLMS-	0.4193	0.4250	1959	0.5277	0.4309	0.5028	0.4911	3844	0.6915	0.6128
J-J-T-03	+41.7	+29.2	+12.3	+29.8	+29.0	+32.9	+24.6	+11.6	+18.6	+19.8
%gain										
YLMS-	0.2960	0.3289	1745	0.4064	0.3340	0.3782	0.3940	3444	0.5830	0.5117
J-J-T-03										
No FB										
KL-Dir	0.4134	0.4174	1902	0.5128	0.4277	0.4874	0.4811	3744	0.6702	0.5926
Mix FB	+40.4	+33.0	+11.3	+28.9	+25.6	+29.0	+21.8	+10.2	+15.0	+18.3
%gain										
KL-Dir	0.2944	0.3139	1709	0.3979	0.3404	0.3779	0.3951	3396	0.5830	0.5011
No FB										

•Some correlation factors between measures on topic by topic basis Initial AP vs Feedabck AP: 0.778 Initial AP vs Feedback gain: -0.434 Feedback AP vs Feedback gain: 0.019 Initial 5, precision vs Feedback gain: -0.139 9

Our hypotheses:

Top k document feedback strategy is especially successful when:

- Short query
 - Feedback gain is emphasized when the original queries are short and terminologically not so rich.
- Terminologically controlled and "clean" document collections such as newspapers or newswires
 - The strategy is not straightforwardly applicable to web documents, where the gain is smaller.
- The document collections are repeatedly used in the preceding workshops.
 - The repeated use of the document collections or similar collections uncovers the collection characteristics and the task practitioners can afford to take an aggressive strategy.
- Sufficient number of relevant documents
 - In order to achieve improvements, there should be some relevant

documents to be promoted, which have retrieved at lower ranks in the pilot search.

Our hypotheses presumably hold true because:

- Our NTCIR-1, TREC-9 TREC-2004 experiments show that the k document feedback strategy gets more improvements when the initial query is short and poor.
- It seems to be more effective with clean documents:
 - Newspaper collections (TREC-3,4 NTCIR-3,4,5) vs Web collection (TREC-9, 2001)
- Presumably it is more effective when the document collection is repeatedly used.
 - TREC-2, TREC-3 < TREC-4
 - NTCIR-3,4 CLIR-J-J < NTCIR-5 CLIR-J-J
- But the number of relevant documents does not seem to affect the % gain?
 - NTCIR-3 CLIR J-J: 19.4% 1654 rel docs
 - NTCIR-4 CLIR J-J: 23.0% 7137 rel docs

2005/12/9 NTCIR-5 CLIR J-J: 41.7% 2112 rel docs

Too many relevant documents cause topic divergence

- Eguchi et al (2002) showed different behaviors of search engines according to the topic difficulty.
 - Our aggressive feedback run performed better with difficult topics.
- Does an aggressive feedback strategy perform better in difficult topics?
 - No correlation between feedback AP and % feedback gain: 0.019
- Through NTCIR-3 to NTCIR5 CLIR J-J, feedback gains are larger when evaluated by rigid relevance criteria.
- What does this mean?
 - Certain levels of term cohesion is necessary among relevant documents for feedback improvement.
- Relax relevant documents are topically too diverse to achieve improvement by a feedback while the feedback narrows down the 2005/12/9 query topics adding more terms.

Feedback Document Clarity Test

- Query Clarity measure by Cronen-Townsend et al.(2002)
- KL-Divergence between the query and the collection language model
- We computes KL-Divergence between feedback documents models and the collection language model
- This may indicate the topic cohesion, but....
- Very weak or no correlation on a topic by topic basis in NTCIR-5 CLIR J-J
 - Query clarity vs Feedback AP : 0.117
 - Query clarity vs Feedback Gain : 0.006
- Moderate correlation on a topic by topic basis in NTCIR-4 CLIR J-J
 - Query clarity vs Feedback AP : 0.46
 - Query clarity vs Feedback Gain : 0.057

Average precision of initial (pilot search) run / feedback run / Query clarity of feedback language models of NTCIR-5 CLIR J-J

Initial AP/feedback AP/Query clarity

Average precision of initial (pilot search) run / feedback run / Query clarity of feedback language models of NTCIR-4 CLIR J-J

Initial AP/feedback AP/Query clarity

Relevance Clarity Test

- KL-Divergence between the relevant documents and collection language models
- Very weak or no correlation with NTCIR-5 CLIR-J-J
 - Relevance clarity vs Feedback AP : 0.155
 - Relevance clarity vs Feedback Gain : -0.058
- Moderate correlation in NTCIR-4 CLIR J-J
 - Query clarity vs Feedback AP : 0.411
 - Query clarity vs Feedback Gain : 0.037

Average precision of initial (pilot search) run / feedback run / Relevance clarity of feedback language models of NTCIR-5 CLIR J-J

Initial AP/feedback AP/Relevance clarity

Average precision of initial (pilot search) run / feedback run / Relevance clarity of feedback language models of NTCIR-4 CLIR J-J

Initial AP/Feedback AP/Relevance clarity

Correlation on a run by run basis

- Strong correlation between feedback gain and average query clarity: 0.824
 - NTCIR-3 CLIR J-J: 19.4% 4.614
 - NTCIR-4 CLIR J-J: 23.0% 6.543
 - NTCIR-5 CLIR J-J: 41.7% 6.985
 - NTCIR-3 Patent : 15.4% 4.731
- Strong correlation between feedback gain and average relevance clarity: 0.807
 - NTCIR-3 CLIR J-J: 19.4% 3.342
 - NTCIR-4 CLIR J-J: 23.0% 5.038
 - NTCIR-5 CLIR J-J: 41.7% 5.563
 - NTCIR-3 Patent : 15.4% 3.094
 - NTCIR-3 CLIR J-J Relax: 17.5% 2.964
 - NTCIR-4 CLIR J-J Relax: 19.0% 4.957
 - NTCIR-5 CLIR J-J Relax: 32.9% 5.302
- ^{2005/12/9} NTCIR-3 Patent Relax: 14.2% 2.937

5 Nearest Neighbor Test

- Voorhees(1985)
 - The n nearest neighbors of a document d are the n documents that are the most similar to d.
 - % of 0,1,2,3,4 or 5 relevant documents in the 5 nearest neighbors of each relevant document
 - It might indicate how similar relevant documents are to each other.
 - An alternative way to test the cluster hypothesis
- A 5 nearest neighbor test may indicate how relevant documents are similar to each other.
 - This measure may indicate topic cohesion as well.

Conclusions

- An automatic feedback strategy from top k documents is exceptionally effective in the NTCIR-5 CLIR J-J test collection (as much as 41.7% gain of MAP).
- Conditions where such an automatic feedback strategy is effective are hypothesized.
- In order to test the topic cohesion, feedback document clarity and relevance clarity tests are carried out.
 - Strong correlation between feedback gain and clarity scores on a run-by-run basis
- Relax relevant documents are topically too diverse to achieve improvements by an automatic feedback.
- 5 nearest neighbor test was carried out.
- Results were consistent with NTCIR CLIR J-J collections 2005/12/9 but with the TREC-4 collection.