
NTCIR-5 CLIR Experiments at QUT

David Lu, Shlomo Geva, Yue Xu, and Yuefeng Li
School of Software Engineering and Data Communications

Queensland University of Technology
Brisbane, QLD 4001, Australia

c4.lu@student.qut.edu.au, {s.geva, yue.xu, y2.li}@qut.edu.au

Abstract
The Information Retrieval and Web Intelligent (IR-WI)
research group is a research team at the Faculty of
Information Technology, QUT, Brisbane, Australia. The
IR-WI group participated in the NTCIR 5 for the first
time. This paper focuses on our participation in the
CLIR task. For this track, we experiment our XML
search engine within the NTCIR English document
collection. Our results indicate that in general, our
XML search engine is not suitable for non-structured
document-level information retrieval due to the
difference of document structure.

1 Introduction
Information Retrieval (IR) is one of the most influential,
challenging and aspired fields in today’s world. QUT’s
Information Retrieval and Web Intelligent (IR-WI)
group is a team of researchers investigating IR and other
associated technologies such as data mining, web
intelligence and recommendation systems. In previous
years, our group has participated in the Initiative for the
Evaluation of XML Retrieval (INEX). We have
developed a XML document search engine – GPX for
the INEX task. GPX produces results that are
comparable with the best alternatives at INEX. This
year we participated in the NTCIR CLIR task and tested
all the 50 topics of the English collections. The main
purpose is to discover the difference between document-
level information retrieval and the XML information
retrieval. The As the NTCIR collection contains well
formatted XML like documents, we can use our indexer
and search engine with only a little change.

2 Indexing
The documents were indexed using the word-base
indexing approach. The indexer was originally
developed for INEX and it is basically used for indexing
XML documents. When indexing, the indexer will
record the term, the term position in the context (context
position), the term position in the article (global
position), the context name (XPATH) and also the
article ID. The words were stemmed using porter
stemmer and stop words were removed from the index
to reduce the size of index file.

3 Searching
Because word-base indexing could not capture phrase,
when searching query includes phrase, we used context
position for phrase retrieval. Only words in the same
context and their positions are in conjunction would be

treated as term. Exact phrase will be given highest
score. As an enhanced, context position can be used for
deciding term proximity. If words appear in the same
context but are not in conjunction we will treat the
words as partial phrase and will be given higher score.
And words appear in the same document but in different
context will have lowest score.

4 Ranking Scheme
In our scheme, XML leaf and branch elements are
treated differently. In the NTCIR collection, leaf
elements are usually with <P> tags or sometimes, only
with <TEXT> tags. Our inverted list mostly stores
information about leaf elements. A leaf element is
considered a candidate for retrieval if it contains at least
one query term. A branch node is candidate for retrieval
if it contains a relevant child element. Once an element
(either leaf or branch) is deemed to be a candidate for
retrieval its relevancy judgment score is calculated. A
heuristically derived formula is used to calculate the
relevance judgment score of leaf elements which is
given below. The score is determined from query terms
contained in the element. It penalizes elements which
contain query terms appearing frequently in the
collection, and it rewards elements with evenly
distributed query term frequencies within the elements.

∑
=

−=
n

i
i

n tKL
1

1

Here n is the number of unique query terms contained
within the leaf element, K is a small integer (we used
K=5). The term Kn-1 scales up the score of elements
having multiple distinct query terms. The system is not
sensitive to the value of K – we experimented with K=3
to 10 with little difference in results. The sum is over all
terms where it is the frequency of the ith query term in
the leaf element. This sum rewards the repeat
occurrence of query terms, but uncommon terms
contribute more than common terms. Once the
relevance judgment scores of leaf elements have been
calculated, they can be used to calculate the relevance
judgment score of branch elements. In the NTCIR
collection, branch elements are usually the root of the
documents. Thus we just sum up all the leaf scores for
the document. Our ranking scheme is quite simple but
with high performance. Our experiments on INEX 2004
indicate that our search engine performed best in
INEX04 conference.

Proceedings of NTCIR-5 Workshop Meeting, December 6-9, 2005, Tokyo, Japan

5 Results
Due to the limited time, we only did experiments on
English collections this year. The results for the official
submission are performed poorly. In most of the cases,
our results are sitting at the bottom of all the
participants’ results. Our MAP is only 0.228 on official
runs. By analysing the results we found that there are a
few reasons that we have such low results. We believe
that the low MAP is caused by the difference between
XML IR and document level IR. In XML IR, we
retrieve the document components (XML nodes) instead
of whole documents. In our ranking strategy, if we have
more words matching at the same XML node, the node
will have higher score. This strategy works perfectly in
the INEX collection. In the INEX collection, the leaf
nodes of a document are usually a few sentences.
Therefore we wound not have to think about the
proximity in the score calculation. However, XML
nodes in the NTCIR collection are very large. In the
NTCIR collection, the leaf nodes are usually a large
piece of text thus we have to consider the proximity in
the score calculation. One of the good examples is topic
13, details as the table showed below.

Position P5 P10 P15 P20 P30 P100 P200 P500 P1000

Precision 0.4 0.2 0.13 0.1 0.1 0.09 0.065 0.034 0.036

Documents 2 2 2 2 3 9 13 17 36

Table 1: Precision of topic 13

As we can see, our search engine cannot really find
relevant document until P100. The query for topic 13 is
“Taliban, Destroy Buddhism”. Our search engine will
give higher rank for the document that have more
matching in the word “Taliban”. As “Taliban” has much
higher frequency than “Destroy Buddhism” in the
collection. Also we are not using any idf*tdf in the
calculation of the score, the documents with a lot of
“Taliban” will rank very high even they do not have the
words “Destroy Buddhism”. Therefore all the relevant
documents are appeared at the bottom of our rank list.

Although our results are not good, we still have some
topics that yield the best or very close to the best results
such as topic 23, 24 and 40. It seems that if the search
keywords are common words, our search engine
outperformed other search engines. However, further
study is needed.

6 Query Expansion
In our experiment, two methods of query expansion
were investigated: plurals/singular expansion and Porter
stemming. Plural and singulars were added using
lexical-based heuristics to determine the plural form of a
singular term (and vice-versa) Porter stemmer was
performed on the existing query terms to derive each of
their stems. The results are shown as table 2.

 No
expansion

Plural and
singulars

Porter
stemming

MAP 0.1031 0.2581 0.2640

P10 0.2300 0.3857 0.3939

Table2. MAP, P10 Results on expansion

As we can see, plural/singulars and porter stemming
provide similar performance. Porter stemmer does not
show much higher benefit for the performance. In most
cases, porter stemmer expansion provides the same
performance as plural/singulars expansion does. We
believed that although the porter stemmer can expand
the query with more words, it also brings noise into the
query in some cases. Therefore its overall performance
does not improve much. For example, in topic 39, we
are looking for “Windows, Linux, competition”.
Competition will be expanded as “competitors
competiting competition competitions competitive
competitively, competitiveness, competitivity”. Some of
those words are not relevant to our topic. Therefore we
see a 10% performance drop. The only topic we can see
performance yield is topic 28. The search words for
topic 28 are “Bubka, human bird, retirement”. As the
search engine received the benefit from expending the
word “retirement”. Words with same stem such as
“Retire retired retirement retirements retires retiring
retirement” are expended. All those expanded words are
relevant to the search topic. Thus we see the precision is
0.1974 for plural/singulars expansion and 0.3872 in
porter stemming expansion.

7 Conclusion
We conducted a series of experiments on existing XML
document information retrieval system. We completed
two sets of experiments with two different query
expansions. Our results indicate that our XML
document search engine is not suitable for NTCIR
document level retrieval. Although our search engine
performed best in XML retrieval, it performed worst in
the NTCIR task due to the difference structure of
documents. Our experiments also used three different
sets of inputs: a standard NTCIR title and expanded
queries. Our results indicate that query expansion can
improve precision over 100%. Although porter
stemming can expand more words for the query, it
provide similar performance as plural/singulars
expansion. We will continue to research on GPX search
engine and will participate in the CLIR task. of next
NTCIR workshop.

Proceedings of NTCIR-5 Workshop Meeting, December 6-9, 2005, Tokyo, Japan

