
NTT’s Japanese-English Cross-Language Question Answering System

Hideki ISOZAKI, Katsuhito SUDOH, Hajime TSUKADA
NTT Communication Science Laboratories

Nippon Telegraph and Telephone Corporation
2-4 Hikaridai, Seikacho, Sorakugun, Kyoto, 619-0237, Japan

{isozaki,sudoh,tsukada}@cslab.kecl.ntt.co.jp

Abstract

This paper describes NTT’s Japanese-English
Cross-Language Question Answering System SAIQA-
J/E. The system performed best among eight systems
that participated in the Japanese-English subtask of
the NTCIR Cross-Language Question Answering task.
For cross-language document retrieval, we used a
dictionary-based approach without word sense disam-
biguation. We used a synonym operator to represent
translation alternatives. Our experiments show that
the synonym operator improved the retrieval precision
of our proximity-based document retrieval module. We
also developed a web-based back-transliteration sub-
module for unknown katakana words.
Keywords: cross-language information retrieval,
question answering, transliteration

1 Introduction

NTT’s Japanese-English Cross-Language Question
Answering System SAIQA-J/E is based on a Japanese
Question Answering System SAIQA that performed
best in NTCIR QAC-2 [1] and an English Question
Answering System SAIQA-e. We reused SAIQA’s
question analysis module and SAIQA-e’s answer ex-
traction/evaluation modules. The Japanese question
analysis module uses ALTJAWS morphological an-
alyzer based on a Japanese lexicon “Nihongo Goi-
Taikei” [2].

A new module, the Japanese-English query trans-
lation module, was introduced to translate the output
of the Japanese question analysis module into English,
and the translated query is sent to SAIQA-e. Figure 1
shows a rough sketch of the system.

In the past, we participated in TREC QA tracks,
but the performance of our English QA system was
mediocre: e.g., MRR = 0.228 for TREC-10 QA track
[3]. There were several problems in our English QA
system, but the most serious problem was the ineffi-
ciency of our SVM-based English NE recognizer.

Since our SVM-based Japanese Named Entity (NE)
recognizer performed very well, we simply applied
the same method to English NE recognition. We pre-
pared a training corpus for English NE by manually
annotating English news articles for five NE classes:
PERSON, LOCATION, ORGANIZATION, FACIL-
ITY, and ARTIFACT. The Japanese NE recognizer
used a five-word window function to classify a word,
and we followed this method. In English NE recogni-
tion, however, we found that important clues such as
appositive phrases were not covered by this window
function. Therefore, we tried to incorporate such clues
into our English NE recognizer, but it required heuris-
tic rules to detect distant apposition relations.

However, SVM was too inefficient to find a bet-
ter combination of such features. In order to make
it faster, we built another NE system, in which NE
candidates are detected by hand-crafted rules and they
are classified by SVMs into three NE classes (PER-
SON, LOCATION, and ORGANIZATION) and one
non-NE class (OTHER). The second NE system was
much faster than the first, but it was still too slow. In
addition, the second NE system can detect only three
NE classes, and the rule-based NE detector degraded
the accuracy. Because of this inefficiency, we had in-
sufficient time to debug the entire QA system.

The second serious problem was the retrieval
method. We used a passage retrieval engine based on
a suffix array, but it was difficult to retrieve relevant
passages.

We solved these problems after TREC-10. First,
we proposed an efficient algorithm for SVM-based NE
[4]. However, it does not cover dozens of answer types
that we need for TREC QA. Therefore, we also de-
veloped a traditional rule-based NE recognizer. Sec-
ond, we developed a proximity-based document re-
trieval method. This retrieval method performed better
than Okapi BM25 tuned for Japanese QA [1]. Our ex-
periment using TREC QA data also showed that our
method outperformed tuned BM25.

The essential part of SAIQA-J/E is the query trans-
lation module, which we designed for our new doc-
ument retrieval engine. Therefore, we first describe

Proceedings of NTCIR-5 Workshop Meeting, December 6-9, 2005, Tokyo, Japan

Japanese Question Analysis Module

J-E Query Translation Module

English Document Retrieval Module

English Answer Extraction Module

English Answer Evaluation Module

Figure 1. Rough sketch of SAIQA J/E sys-
tem

our proximity-based document retrieval engine in Sec-
tion 2. Then, we describe the query translation mod-
ule in Section 3. This module has a web-based back-
transliteraton submodule. We describe it in detail.
Finally, we describe the English answer extraction/
evaluation module in Section 4.

2 Proximity-based Document Retrieval
Engine

For English word indexing, we used TreeTag-
ger (http://www.ims.uni-stuttgart.de/projekte/corplex/
TreeTagger/) for part-of-speech tagging. We also used
downcasing and a variant of the Porter stemmer (http:/
/www.tartarus.org/˜martin/PorterStemmer/). We did
not remove any words from the index.

We described our proximity-based document re-
trieval engine in [5, 1]. With our method, document
D’s score is defined as the maximum value of the
scores of all possible passages in D.

DSDIDF(β)(D) = max
pvD

PSDIDF(β)(p).

Here, p1 v p2 means that a passage p1 is contained in
another passage p2. The document D is also regarded
as a passage.

The score of a passage spanning the l-th word to the
r-th word is given by the following definition.

PSDIDF(β)([l, r]) = exp(−β(r − l))
∑

q∈Q([l,r])

idf [q]

where idf [q] = log(N/df [q]) is Inverse Document
Frequency (IDF) of query term q. df [q] is the num-
ber of documents that contain q. N is the total number
of documents. Q([l, r]) is the set of query terms that
appear in the passage.

β is a non-negative decay factor. If β is large, the
scoring function becomes nearsighted. A short pas-
sage that contains many important query terms is pre-
ferred. If β is small, the scoring function becomes far-
sighted. Even a long passage can obtain a good score

score Document ID term(IDF),position list
26.14 20000224E1T- drift(5.318),40, usuki(8.174),43

DY03B000010 netherland(4.580),60,126,279,..
21.19 20000413E1T- drift(5.318),255 usuki(8.174),262

DY03A000040 netherland(4.580),245 ..
16.41 20010625E1T- usuki(8.174) 6,68,129,205,214,317

DY18A000050 ship or2 vessel(3.330) 26,107,161 ..

Table 1. Output of the search engine

if it contains many important query terms. We call this
method Decayed IDF (DIDF).

Note that this formula completely disregards the
repetition of query terms. We think simple repetitions
should not be regarded as evidence of an answer.

Our previous paper [1] shows that DIDF’s precision
was best around β = 0.001 for Japanese QA. BM25
was best around k1 = 0.1 but DIDF was better than
BM25. According to our experiment using TREC-
11 QA data, DIDF gave the best retrieval precisions
around β = 0.001. Okapi BM25 was best around
k1 = 0.3 but DIDF was again better than BM25.

Query terms for the proximity search are joined by
the or operator. For instance, query ‘A or B or
C’ gives a set of query terms Q = {A, B, C}.

However, one Japanese word often corresponds to
two or more English expressions. We should consider
these alternatives for document retrieval. For instance,
Nippon is a synonym of Japan. If we use ‘Japan
or Nippon,’ the above scoring function prefers a
passage that contains both Japan and Nippon to
another passage that contains only Japan when the
passages have the same length. However, synonyms
should not be regarded as new evidence of an answer.

In order to avoid this problem, we incorporated
a synonym operator or2 in this engine. This op-
erator treats query terms as if they are the same
word. Then, we can use ‘Japan or2 Nippon’
to represent the synonymity. IDF of ‘Japan or2
Nippon’ is defined as the minimum of idf[Japan]
and idf[Nippon]. Pirkola [6] also used such a
synonym operator for cross-language information re-
trieval.

We also used or2 for QAC-2, but we could not
show its effectiveness because QAC-2 questions did
not require paraphrasing to obtain answers. In CLQA,
however, many Japanese words have two or more En-
glish translations. Therefore, we expect that or2 will
play an important rule in the CLQA system.

Table 1 shows the top 3 documents for CLQA1-
JA-S0011-00 (1600 nen, Usuki ni hyouchaku shita
Oranda no fune wa nan to iu?, What is the name
of the Dutch ship that drifted ashore at Usuki in
1600?). The Japanese word ‘fune’ in the question
is translated to ‘watercraft or2 ship or2
boat or2 vessel or2 steamship.’ The out-
put for the third document contains ‘ship or2

Proceedings of NTCIR-5 Workshop Meeting, December 6-9, 2005, Tokyo, Japan

vessel.’ This means that this document contains
both ship and vessel, but they are treated as if they
are the same word. In fact, ship appears at 26 and
107 and vessel appears at 161.

The romanization of Japanese words is ambiguous.
For instance, ‘Chatan-cho’ is the name of a town. It
is also written as ‘Chatancho,’ ‘Chatan cho,’ ‘Chatan
chou,’ and so on. These variations can be automati-
cally generated, and we used or2 to cover these vari-
ations.

3 Query Translation Module

SAIQA-J/E’s query translation module depends
on two submodules: 1) a dictionary-based word
translation submodule and 2) a web-based back-
transliteration submodule. The back-transliteration
submodule is called when a query term is written in
katakana and its translation is unknown.

3.1 Dictionary-based word translation

For each Japanese query term, the query translation
module consults publicly available Japanese-English
dictionaries (EDICT 110,428 entries, ENAMDICT
483,691 entries, http://www.csse.monash.edu.au/˜jwb/
j edict.html) and an in-house translation dictionary
(660,778 entries).

Since inter-word spaces are not used in Japanese
language, different dictionaries lead to different seg-
mentations of a sentence. Therefore, these dictionaries
were also incorporated into a Japanese morphological
analyzer ALTJAWS used in SAIQA.

Suppose these dictionaries give one or more En-
glish phrases E1, . . . , Em for a Japanese term. As
we mentioned before, the use of ‘or’ gives too much
scores to redundant occurrences of these phrases, so
we use “E1 or2 · · · or2 Em” instead. Then, these
English queries for different query terms are joined
by the or operator, which works in the same way as
adding IDF scores.

For instance, CLQA1-JA-S0031-0 (“Shoukaiseki
ga shibou shita no wa itsu?” = When did Chiang
Kai-shek die?) has two Japanese query terms:
‘shoukaiseki’ and ‘shibou.’ Therefore, the
original Japanese query is ‘shoukaiseki or
shibou’. ‘Shoukaiseki’ has three alternatives in
the above translation dictionaries: ‘Shou Kaiseki’
(Japanese pronunciation), ‘Jiang Jieshi’
(Chinese Pinyin), and ‘Chiang Kai-Shek’
(traditional English spelling). There are two trans-
lations for ‘shibou’: ‘die’ and ‘mortal.’
Therefore, the translated English query will be
‘("Shou Kaiseki" or2 "Jiang Jieshi"
or2 "Chiang Kai Shek") or ("die" or2
"mortal").’

Japanese Downcased & stemmed English query���
((pekin) or2 (beij))���
((duti) or2 (oblig) or2 (respons))���	�
((templ or kinkaku) or2 (kinkakuji) or2
(pavilion or templ or golden))

Table 2. Translation Table

However, phrase matching is sometimes too
strict even if the phrases are names. For in-
stance, "William Clinton" will not match
"Bill Clinton" or "President Clinton".
Therefore, we replaced the above phrases by disjunc-
tions. Hence, the query becomes ‘(((Shou) or
(Kaiseki)) or2 ((Jiang) or (Jieshi))
or2 ((Chiang) or (Kai) or (Shek)) or
((die) or2 (mortal)).’

By downcasing and stemming such queries, we pre-
pared a translation table as shown in Table 2. This
translation table contains 847,155 Japanese words.

However, when we implemented or2, we assumed
that or2 joins only single words and phrases. For in-
stance, in ‘w1 or2 w2 or2 (w3 or w4),’ or2
occurs twice, but the current system recognizes only
the synonymity of w1 and w2. We tried to extend the
definition of or2 to such cases, but we were unsuc-
cessful until the formal run of CLQA-1. Therefore, we
decided to use the current implementation for CLQA-
1.

By using the development dataset provided by the
CLQA organizer, we found that some one kanji char-
acter entries in the above dictionaries degraded the
system performance. For instance, the kanji charac-
ter ‘ichi’ that corresponds to the English word ‘one’
has 18 entries (possible translations for different word
senses) in ENAMDICT. Another kanji character ‘nen’
that corresponds to the English word ‘year’ has five
entries. Most of these entries are unusual (perhaps
wrong). Since these words appears in many ques-
tions, they will greatly degrade the system perfor-
mance. Therefore, we extracted one character entries
from the dictionaries, and asked a Japanese to remove
inappropriate entries from the list.

3.2 Web-based Back-transliteration

In Japanese, foreign words are written in katakana,
a set of phonetic characters. When a katakana word in
a question does not have an entry in the translation ta-
ble, the word is sent to a back-transliteration submod-
ule. Figure 2 shows a web-based back-transliteration
submodule. Here, transliteration is a process that con-
verts an English word into a katakana sequence that
is phonetically similar to the English word. Back-
transliteration is a process that finds the original En-
glish word from the katakana word. It is possible to

Proceedings of NTCIR-5 Workshop Meeting, December 6-9, 2005, Tokyo, Japan

Doc1 Doc2 ... Doc50

Relevant URLs

Internet Search Engine

���������

Andrjei Wajda movie Kanal

���������1.5 ���	�
���90.3 ���������453.6 ���������320.1

Figure 2. Web-based back-transliteration

build such a back-transliteration system from a set of
training examples.

Tsuji et al. [7] proposed a web-based English-to-
katakana transliteration system that send dozens of
phonetically generated katakana candidates to a search
engine for validation. It is possible to apply their
method in the reverse direction. However, if the En-
glish spelling is unusual, we cannot expect this method
to generate the correct spelling.

Here, we assume that there must be a web docu-
ment that contains both the unknown katakana word
and its spelling in English. In fact, we often find such
documents in online encyclopedias and jargon lists.
Therefore, we send only one query (i.e., the katakana
word itself) to a search engine. We can obtain unusual
correct spellings such as ‘Andrjei’ for katakana �������

(anjei) by scoring candidates in relevant docu-
ments.

The submodule works as follows.

1. The submodule sends the katakana word to an
internet search engine as it is. Then, the search
engine returns URLs of relevant Japanese docu-
ments.

2. The submodule retrieves the 50 top documents
from the web, and removes their HTML tags.

3. The submodule extracts strings of Roman let-
ters from the documents. From the strings, word
n-grams are extracted and enumerated as candi-
dates.

4. A transliteration scorer ranks these candidates
with respect to the given katakana word, and the
submodule returns the highest scoring candidate.
In Fig. 2, ‘Andrjei’ obtains the lowest penalty of
1.5, while ‘movie’ obtains the highest penalty of
453.6. Hence, ‘Andrjei’ is returned.

The transliteration scorer is trained as follows.

Given a katakana sequence (k = ”k1 · · · kl(k)”)
and a set of Roman letter sequences R =
{r1, . . . , rn}. Here, l(k) is the length of the string
k. We find the most likely back-transliteration r

∗ that
maximizes the transliteration likelihood as follows:

r
∗ = argmax

r∈R

p(r | k) = argmax
r∈R

p(k, r)/p(k)

= argmax
r∈R

p(k, r). (1)

For the calculation of the joint probability p(k, r),
we consider a paired character sequence c =
〈c1, ..., cl(c)〉 where each cj is a pair 〈cj .k, cj .r〉. cj .k
is a katakana character in k or a NULL character
〈ε〉. cj .r is a Roman letter in r or 〈ε〉. We as-
sume the alignment is monotone. Based on this align-
ment, we approximate p(k, r) by considering only the
most likely alignment that maximizes the translitera-
tion likelihood among all possible paired character se-
quences C(k, r).

p(k, r) =
∑

c∈C(k,r)

p(c)

≈ max
c∈C(k,r)

p(c) (2)

We approximate p(c) as a second-order Markov
model as follows:

p(c) =

l(c)
∏

j=1

p(cj | c1, . . . , cj−1)

≈

l(c)
∏

j=1

p(cj | cj−2, cj−1). (3)

We call this model the transliteration model. The
calculation of p(k, r) can be implemented with two
weighted finite state transducers (WFSTs),T and O.
T is the transliteration WFST which reads a katakana
character sequence and outputs the Roman letter se-
quences. The negative logarithms of the probabili-
ties in 3 are used as weights in T . O is the out-
put WFST which reads r and outputs nothing. That
is, O is a finite state acceptor. Although we can ob-
tain

∑

c∈C p(c) with the fully-composed and deter-
minized WFST T ◦ O, we compose T and O partially
by using a beam search because of computational cost.

In the training, we use only the most likely paired
character sequence c

∗
F obtained through a monotone

alignment between k and r among all possible paired
character sequences c ∈ C(k, r).

We determine c
∗
F as the one that maximizes the

character alignment score F as follows:

c
∗
F (k, r) = argmax

c∈C(k,r)

F (c) (4)

F (c) =

l(c)
∏

j=1

φ2(cj .k, cj .r) (5)

Proceedings of NTCIR-5 Workshop Meeting, December 6-9, 2005, Tokyo, Japan

(transliteration pairs)

���������	��

: i c e c r e a m

������	�
: i v o r y

φ2
calculation

�

<ε>

<ε> <ε>

finding the most likely alignment

<ε>(: NULL character)

counting N-grams (N=1,2,3)

<ε>−
�

i-
� <ε>−

�
i-
�

i-
� �

c-

<ε>−
�

i-
�

i-
� �

c-

�
c-

e-<ε>
creating 3-gram model

��� �����

i c e c r e a m

Figure 3. Training procedure of a translit-
eration model.

φ2 is a correspondence measure between the two
symbols [8]:

φ2(σk, σr) =
(AD − BC)2

(A + B)(A + C)(B + D)(C + D)
(6)

where

A = freq(σk , σr)

B = freq(σk) − freq(σk , σr)

C = freq(σr) − freq(σk , σr)

D = N − A − B − C. (7)

freq(σk) is the number of katakana words including
the katakana character σk in the training set. freq(σr)
is the number of Roman letter words including the Ro-
man letter σr in the training set. freq(σk , σr) is the
number of transliteration pairs including both σk and
σr in the training set. N is the total number of translit-
eration pairs in the training set. The training procedure
is illustrated by Figure 3.

The transliteration model in the current translitera-
tion scorer was trained by using 19,856 transliteration
pairs.

Table 3 shows the output of the back-transliteration
submodule for the development dataset and the formal
run dataset. In addition to the development dataset
provided by the CLQA organizer, we also used one
hundred in-house CLQA questions. Question num-
bers starting with ‘I’ indicate the in-house questions.
The back-transliteration submodule was called for 11
unknown katakana words for the development dataset.
Correct translations were returned for seven of these
katakana words. Since the internet search engine re-
turned no documents for ������� and � ��������

, the submodule also returned no English words
for them. It returned an incorrect translation for � �!�#" . For this word, the internet search en-
gine returned no documents that contained the correct
spelling ‘Punder.’ Therefore, a phonetically inappro-
priate candidate ‘index’ was selected.

Since our transliteration method does not generate
candidates but simply collects Roman letter sequences
from retrieved web documents, phonetically inappro-
priate candidates are sometimes returned. It must be
possible to reject the best candidate when its penalty
is too large.

For the formal run, the submodule was called for
six katakana words. The submodule returned correct
translations for three words ($�%'&)(,

�
, and *+"

$#"!,.-���, � �), and returned only one incorrect
translation (�/&)0 ���21 ,). Since �#&�0 � �21
, is not a transliteration of a foreign word, we can-
not expect the back-transliteration submodule to return
the correct answer ‘tropical culex mosquitoes.’ Al-
though the submodule returned no translations for 34/5

and *6, �278� for the formal run, it returned

Proceedings of NTCIR-5 Workshop Meeting, December 6-9, 2005, Tokyo, Japan

Q katakana output English OK?
S0126 ������� Docker Docker OK
S0196 �	� � SAMOA Samoa OK
S0207
�� �� � index Punder NG
S0218 � ���� — Odunewu NG
S0222 ������� Mukesh Mukesh OK
S0222

��� ���
Ahuja Ahuja OK

S0238 � � ������� — Maimonides NG
S0244 !�#"$� Nooner Nooner OK
I0013 %'&)()*,+.-�/�(102 +1043�5.+#67+�8

Sony Computer
Entertainment

Sony Computer
Entertainment

OK

I0069 9 � ��:.�#; biotope biotope OK
I0092 9 ��<>= ��� Buffaloes Buffaloes OK
T0091 ?�@A�CB Patek Patek OK
T0132 � de de OK
T0157

� �>D � �1E � nutria tropical culex
mosquitoes

NG

T0180 F�� ��G � skybiz* skybiz OK*
T0194 H!(4I�(!J�KML

J,+ON
Super
Kamiokande

Super-
Kamiokande

OK

T0199 P)��Q Nomura* Nomura OK*

Table 3. Output of the back-
transliteration submodule (*In the formal
run, the system failed to obtain the output of the
internet search engine because of the network status.)

correct translations when the first author was writing
this working note. According to the execution log of
the formal run, the system failed to obtain the output of
the internet search engine. Perhaps, the system would
have succeeded if it had retried. Since this submodule
depends on the web, its output depends on the network
status and changes from time to time.

4 Answer Extraction/Evaluation Module

4.1 Extraction

As we mentioned earlier, SVM-based English NE
can cover only a small number of answer types. In or-
der to cover the dozens of answer types we need for
QA, we developed a hand-crafted rule-based NE rec-
ognizer. Here, we used only the hand-crafted recog-
nizer for CLQA-1. The hand-crafted recognizer has
669 rules for 143 answer types.

Figure 4 shows two NE rules. The first rule
says “if a sequence of proper nouns (NPs) are
preceded by ‘wife of,’ the sequence should be
tagged with <MALE>.” It matches a word se-
quence such as “wife of Bill Clinton” and
outputs “wife of <MALE>Bill Clinton.”
The second rule matches a word sequence such
as “Texas Governor George Bush” and
outputs “<STATE>Texas <PTITLE>Governor
<PERSON>George Bush.” Here, stategov
is a predefined macro for WordNet’s synset offset

wife of <MALE>{_,NP,_}+ -> priority(4).

<STATE>_CAP_,NP,[stategov] <PTITLE>Governor
<PERSON>{_,NP,_}+ -> priority(9).

Figure 4. Examples of hand-crafted NE
rules

Part-of-Speech Tagger

Word Sense Tagger

Named Entity Recognizer

WordNet

Name Lists

Figure 5. Answer extraction module

07130102 that means ‘state or province’ [9]. CAP
stands for a capitalized word.

These rules are compiled and applied by a left-to-
right longest match method. The priorities given in the
rules are used when two or more rules have the same
span. The pattern matching engine is an extension of
our old rule-based Japanese NE system [10].

These NE rules depend heavily on word senses. In
addition, we sometimes want to treat a phrase that
is composed of two or more words as a single en-
tity. For instance, the second rule should be applicable
to a governor of North Carolina. Therefore, a word
sense tagger is applied before the NE recognizer (Fig-
ure 5). The word sense tagger chunks words and adds
word senses to each noun phrase by using WordNet
and additional name lists (76,555 phrases) obtained
from the web. Since the Daily Yomiuri newspaper
has many romanized Japanese names, we added ro-
manized Japanese name lists to the tagger. Figure 6
shows an example output of the word sense tagger.
This document contains New as the 1,598th word and
Zealand as the 1,599th word. They appear in the
54th sentence. Since they form a single country name,
they are chunked as New Zealand, and its WordNet
synset offsets (00001742 etc.) are given. The word
sense tagger was implemented by using a simplified
version of the aforementioned left-to-right longest pat-
tern matcher.

4.2 Evaluation

We followed SAIQA’s answer evaluation method
[1]. Candidate c in a document D is evaluated by
a weighted Hanning window function defined as fol-
lows:

score(c, D) =
∑

q∈Q

idf [q]H(d(c, q)),

Proceedings of NTCIR-5 Workshop Meeting, December 6-9, 2005, Tokyo, Japan

54-1589-1589 Jane NP 99999998
54-1590-1590 Hunter NP 00001742/00002664/000
54-1591 , , ,
54-1592-1592 owner NN 08514464/08116255/0811
54-1593 of IN of
54-1594-1594 Hunter NP 00001742/00002664/000
54-1595 ’s POS ’s
54-1596-1596 Winery NN 04002319/02797084/034
54-1597 in IN in
54-1598-1599 New_Zealand NP 00001742/0001306

Figure 6. Output of word sense tagger

d(c, q) is the distance between c and the nearest posi-
tion of a query term q, and

H(d) =

{

1
2 (cos(π d/W) + 1) if 0 ≤ d ≤ W,
0 otherwise.

In SAIQA, we multiplied the candidate score by
document D’s score DS(D), but we removed this
multiplication here because DS(D) did not improve
SAIQA’s performance at all and it degraded SAIQA-
J/E’s performance for the development dataset. We
used W = 60 following SAIQA.

The evaluation module uses the output of the re-
trieval engine shown in Table 1 to calculate the score,
and takes synonyms into consideration.

5 Results

Table 4 compares the performance of SAIQA-J/E
(CLQA) and SAIQA-e (EQA). According to this ta-
ble, CLQA’s performance is comparable to that of
EQA. In the strict evaluation, CLQA obtained better
MRR than EQA. This is not a surprising result, be-
cause we did not spend much time on debugging the
English question analysis module before the NTCIR
CLQA-1 formal run. The Japanese question analysis
module returned correct answer types for 95% of the
given questions. On the other hand, the English ques-
tion analysis module succeeded for only 73% of the
questions. Therefore, we debugged only the English
question analysis module. EQA2 in Table 4 shows the
improved EQA system. Although the English ques-
tion analyzer is still worse than the Japanese question
analyzer, EQA2’s performance is better than CLQA’s.

Table 5 shows the performance of the document re-
trieval module. p@r is a standard measure, namely
‘precision’ or the average ratio of ‘relevant’ docu-
ments within top r documents. Here, a ‘relevant’ doc-
ument is a document that contains a correct answer
with or without sufficient evidence. a@r is the ratio
of ‘answerable’ questions that has at least one relevant
document in the top r documents. According to the ta-
ble, p@r is very low for larger r values, but this simply
means that only a small number of documents contain
correct answers. A high p@r for a small r implies the
effectiveness of our search engine.

CLQA EQA EQA2
Development set

Top1 0.377 0.473 0.497
lenient MRR 0.454 0.536 0.562

Top5 0.580 0.617 0.650
Official run

ans type 0.950 0.730 0.875
Top1 0.300 0.300 0.370

strict MRR 0.376 0.359 0.440
Top5 0.490 0.445 0.540
Top1 0.315 0.350 0.425

lenient MRR 0.420 0.432 0.518
Top5 0.585 0.550 0.650

Table 4. Performance of CLQA and EQA
(automatic evaluation)

r CLQA without or2 EQA2
1 0.520 0.450 0.805
3 0.312 0.282 0.437

p@r 10 0.174 0.152 0.224
20 0.122 0.105 0.152
50 0.082 0.070 0.097
1 0.520 0.450 0.805
3 0.660 0.590 0.890

a@r 10 0.765 0.690 0.910
20 0.805 0.745 0.915
50 0.835 0.800 0.915

Table 5. Performance of the document re-
trieval module for the official run (auto-
matic evaluation)

Proceedings of NTCIR-5 Workshop Meeting, December 6-9, 2005, Tokyo, Japan

CLQA without or2
Top1 0.377 0.317
MRR 0.454 0.377
Top5 0.580 0.567

Table 6. Effectiveness of or2 for the de-
velopment set (automatic evaluation)

EQA(2)’s retrieval module performed much bet-
ter than CLQA’s. Our proximity-based document re-
trieval engine ranked relevent documents as the best
for 80.5% of the official run questions. This implies
that the official run questions are relatively easy as
monolingual QA. On the other hand, the same engine
returned relevant documents as the best for only 52.0%
of the Japanese questions. When we used or instead
of or2, the rate dropped to 45.0%. This result shows
the usefulness of the synonym operator.

Table 6 compares the performance of the entire
CLQA system with that of the system without or2.
According to the table, the use of ‘or’ instead of
‘or2’ greatly degrades the system’s MRR. This result
also shows the effectiveness of or2. However, Top5
did not degrade very much.

English question analysis appears to be more diffi-
cult than Japanese question analysis because WordNet
gives unusual word senses. For example, many En-
glish words such as ‘tiger’ and ‘planet’ are used to rep-
resent people. English question analyzers have to dis-
ambiguate such words. On the other hand, we rarely
encounter such ambiguous cases in Japanese question
analysis.

6 Conclusion

We developed a Japanese-English Cross-Language
Question Answering system that performed best
among eight systems in an NTCIR CLQA JE task. Ac-
cording to our experiments, the introduction of a syn-
onym operator significantly improved the retrieval per-
formance and the overall QA performance. Our sys-
tem employed a web-based back-transliteration sys-
tem for unknown words.

References

[1] H. Isozaki, “An analysis of a high performance
Japanese question answering system (to ap-
pear),” ACM Transaction on Asian Language
Processing, 2005.

[2] S. Ikehara, M. Miyazaki, S. Shirai, A. Yokoo,
H. Nakaiwa, K. Ogura, Y. Ooyama, and
Y. Hayashi, Goi-Taikei — A Japanese Lexicon (in
Japanese). Iwanami Shoten, 1997.

[3] H. Kazawa, H. Isozaki, and E. Maeda, “NTT’s
question answering system in TREC 2001,” in
Notebook of The Tenth Text Retrieval Confer-
ence, pp. 415–422, 2001.

[4] H. Isozaki and H. Kazawa, “Efficient support
vector classifiers for named entity recognition,”
in Proceedings of COLING-2002, pp. 390–396,
2002.

[5] H. Isozaki, “NTT’s question answering system
for NTCIR QAC2,” in Working Notes of the
Fourth NTCIR Workshop Meeting, pp. 326–332,
2004.

[6] A. Pirkola, “The effects of query structure
and dictionary setups in dictionary-based cross-
language information retrieval,” in Proceedings
of the 21st Annual International ACM SIGIR
Conference on Research and Development in In-
formation Retrieval, pp. 55–63, 1998.

[7] K. Tsuji, S. Sato, and K. Kageura, “Evaluation
of the effectiveness of transliteration and a search
engine for person names (in Japanese),” in Pro-
ceedings of the Eleventh Annual Meeting of the
Association for Natural Language Processing,
pp. 352–355, 2005.

[8] W. A. Gale and K. W. Church, “Identifying word
correspondences in parallel texts,” in Proceed-
ings of 4th DARPA Workshop on Speech and Nat-
ural Language, pp. 152–157, 1991.

[9] C. Fellbaum, ed., WordNet: An Electronic Lexi-
cal Database. MIT Press, 1998.

[10] H. Isozaki, “Japanese named entity recognition
based on a simple rule generator and decision
tree learning,” in Proceedings of the 39th An-
nual Meeting of the Association for Computa-
tional Linguistics, pp. 306–313, 2001.

Proceedings of NTCIR-5 Workshop Meeting, December 6-9, 2005, Tokyo, Japan

