
A Distributed Retrieval System for NTCIR-5 Patent Retrieval Task

Hiroki Tanioka Kenichi Yamamoto
Justsystem Corporation

Brains Park Tokushima-shi, Tokushima 771-0189, Japan
{hiroki tanioka, kenichiyamamoto}@justsystem.co.jp

Abstract

We developed a distributed search system with the
corresponding very large scale corpora from NTCIR-5
Patent Retrieval Task. And we developed the method
of query refining using Support Vector Machines. Our
search system, which consists of 5 PCs could make in-
dices of all claims for ten years. Additionally, we con-
firmed that our arranging the scoring method made an
improvement of mean average precision.
Keywords: distributed information retrieval, support
vector machines, vector space model, inverted file

1 Introduction

Our purposes to participate in NTCIR-5 Patent Re-
trieval Task is as follows.

• Research and development search systems which
are corresponding a very large scale corpora.

• Research and development query refining meth-
ods which are useful for “invalidity search”

The background of first purpose is that digital doc-
uments are increasing in recent years, while we need
search systems to effectively access these documents.
But traditional search systems cannot make the full
text indexes for these documents. Therefore we pro-
pose a distributed search system which is build on a
distributed framework.

A background of second purpose is that it is high
cost to make query from claims manually for invalidity
patent search. Then, we try to make query from claims
automatically.

The rest of this paper is divided into three sec-
tions. Section 2, we describe an architecture of our
distributed processing framework and search system.
Section 3, we describe results of formal runs. Section
4, we discuss about results and future works.

2 System Description

In this section we describe the architecture of our
distributed search system and information retrieval
models including some scoring methods.

2.1 Document Retrieval Subtask

First, we explain the system architecture and mod-
els for Document Retrieval Subtask.

2.1.1 Overview

We develop a distributed search system which is based
on Vector Space Model using term partitioning with an
inverted file-based system, while a single inverted file
is created for the document collection and the inverted
lists are spread across the processors.

During query evaluation, the query is decomposed
into indexing items and each indexing item is sent
to the processor that holds the corresponding inverted
list[1].

2.1.2 Distributed Processing Framework

Cocktail Framework1 is used to make the distributed
search system based on Vector Space Model. The
framework provides a service of agents between client
and server as broker between query and each indexing
item.

Figure 1 shows an overview of this framework. To
process a job2 in our system, a client machine receive
a job, and keep in a FIFO queue. And then, to send
the job to a server machine, unconfined agents pull the
job from the FIFO queue. Last, the server machine
performs the job and send a result back to the client
machine via same agent.

1Cocktail Framework is developed for distributed processing
framework by Justsystem Corporation.

2Job is described as a pair of command and argument which are
processed in our system.

Proceedings of NTCIR-5 Workshop Meeting, December 6-9, 2005, Tokyo, Japan



Figure 1. System Description

2.1.3 Indexing Algorithm

This system has indexing structure using an inverted
file. And this inverted file-based system is based on
term partitioning for whole distributed inverted files
on some server machines as a single inverted file.

In general, there are two methods of how to dis-
tribute inverted files on server machines. First method
is that an inverted file is divided based on terms. Sec-
ond method is that an inverted file is divided based on
documents. And, the second method needs to search
the inverted file on all server machines for the docu-
ments, but it is hard to calculate the correct IDF scores
for each terms in a query. Thus we decide on to apply
the first method.

The problem is that it is too costly to make the in-
verted file. It needs a large amount of memory if we
execute on memory, and it needs a long time if we ex-
ecute on hard disk. Therefore we take an approach
using a kind of merging the partial indices increas-
ingly. In concrete, we show the conceptual figure as
Figure 2. We make the inverted file on memory until
reach a limit. When the size of inverted file is over the
limit of memory, we store the inverted file on memory
to hard disk. If there are already a previous inverted
file on hard disk, the two files on hard disk and on
memory are gradually merged.

The total time to generate the partial indices is
O(n), where n is the number of characters, m is the
number of merging times. And thus the cost of this
algorithm is as follows,

O(
n′ · m(m + 1)

2
) ≃ O(n′ · m2) (1)

wheren′ is an average number of characters each
partial indices.

2.1.4 Retrieval Model

Our retrieval model is based on Vector Space Model.
And calculating formula of search score is based on
simple calculation ofTF · IDF as follows.

SQ =
p1

Tq

(2)

ST = log(TF ) · log(
N

DF
) + SQ (3)

WhereSQ is the score dependent on the number
of termsTq in given query,ST is the score of termt,
TF is term frequency,N is the number of documents,
andDF is document frequency. To prove the limita-
tion of log(TF ), we usep2 instead oflog(TF ) when
log(TF ) is greater thanp3.

Here in the experimentations, the values of parame-
ters are set without making an adjustment at all. Where
each constant numbers are declared as follows.

p1 = 100, p2 = 1, p3 = 2 (4)

There are three differences from originalTF ·IDF

calculating formula.

• Using logarithm for term frequency :TF

• Addition of score :SQ

• Limitation of logarithmicTF : log(TF )

The first difference is based on our pilot study,
which shows an adverse effect a greater values ofTF

on originalTF · IDF calculation. The second differ-
ence is that operationality method controls the score
based on the number of terms in a query. And a pur-
pose of the third difference is a solution of detecting
high frequency terms.

Proceedings of NTCIR-5 Workshop Meeting, December 6-9, 2005, Tokyo, Japan



Figure 2. Indexing Algorithm

In addition, the feature of Vector Space Model con-
tains terms of noun, verb and unknown word as part of
speech from all claims by using a tool of morphologi-
cal analyzer3

2.1.5 Query Processing

It is the high cost to make queries from claims man-
ually for invalidity patent search. Then we try to
make queries from claims automatically. In this in-
stance, we use Support Vector Machines (SVMs)[6, 3]
to choose terms from a claim as a query. And we use
LIBSVM[2] as a library for SVMs.

We prepare a training data of 40 queries by patent
administrator in Justsystem Corporation. The features
for SVMs are surface and part of speech as follows.

• Word of current (Current Word)

• Word of previous (Pre Word)

• Word of next (Post Word)

• Self-sufficient word of previous (Pre Self Word)

• Self-sufficient word of next (Post Self Word)

And, Figure 3 shows an example of features. Where
Self-sufficient word usually said in Japanese is sube-
qual to content word in English.

2.2 Passage Retrieval Subtask

The search system for Passage Retrieval Subtask is
the same system of Document Retrieval Subtask with
some exceptions as follows.

• The system for Passage Retrieval Subtask con-
sists of 1 PC only.

• One passage is defined as one document to use
the system for Document Retrieval Subtask.

3The tool of morphological analyzer was developed by Justsys-
tem Corporation features Hidden Markov Model and Bigram.

3 Results

In this section we show the result of NTCIR-5
Patent Retrieval Task.

3.1 Document Retrieval Subtask

It shows the result of Document Retrieval Subtask.
Table 1 shows the difference of 2 runs we submitted.

Table 1. Difference of each runs
variety of query

JSPAT1 all terms of query
JSPAT2 selected terms using SVMs

Table 2 shows the performance of our system. The
indexing time was without the morphological analysis
time.

Table 2. Performance of Search System
Indexing time 8.81 hours
Search time (JSPAT1) 40.05 sec.
Search time (JSPAT2) 9.86 sec.

Table 3 shows that specification of these PCs. And
expanded information is that each network-linked PCs
are connected on gigabit Ethernet.

Table 3. Specification of PCs
CPU[GHz] Ram[GB] OS

A Celeron 2.4 1 WinXP Pro SP2
B Celeron 2.4 1 FedoraCore3
C Celeron 2.4 2 FedoraCore3
D Celeron 2.2 1 FedoraCore3
E Celeron 2.2 1 FedoraCore3

Proceedings of NTCIR-5 Workshop Meeting, December 6-9, 2005, Tokyo, Japan



Figure 3. Features of SVMs

On that basis, the time for indexing all claims was
8.81 hours. And the time to search for invalidation of
patents was 9.86 or 40.05 second for each query. The
variation in search time was caused by the difference
in the amount of terms in a query. As a result, we
thought that the distributed search system showed a
significant advantage for the processing time.

Table 4 shows mean average precisions result of all
runs. Where others is an average of the other partici-
pants’ mean average precisions.

Table 4. Result of Each Runs
ntcir5a ntcir5b ntcir4a ntcir4b

JSPAT1 0.0667 0.0532 0.0912 0.0588
JSPAT2 0.0587 0.0484 0.1085 0.0768

others 0.1592 0.1286 0.2021 0.1795

According to these results, the result of JSPAT2 was
better than JSPAT1 on ntcir4a and ntcir4b. But JSPAT2
was worse than JSPAT1 on ntcir5a and ntcir5b. We
cannot say that selected terms using SVMs lead to a
positive outcome.

3.2 Passage Retrieval Subtask

We show the result of Passage Retrieval Subtask.
Table 5 shows the difference of 2 runs. JSPAT1 was
submitted for the formal run. And JSPAT2 was the
result of our optional experiments.

Table 5. Difference of Each Runs
variety of query submitted

JSPAT1 all terms of query Yes
JSPAT2 selected terms using SVMs No

Table 6 shows mean average precisions. Where
others is an average of the other participants’ scores.
Then we could confirm that our results were positive
in mean average precision.

Table 6. Mean Average Precision
a.a a.b b.a b.b

JSPAT1 0.5228 0.4785 0.4900 0.4626
JSPAT2 0.4431 0.4146 0.4244 0.4092

others 0.3404 0.3433 0.3256 0.3320

And Table 7 shows precision oriented scores. We
could confirm that our results were also positive in pre-
cision oriented score.

Additionally, JSPAT1 was slightly batter than JS-
PAT2 in mean average precision. Meanwhile JSPAT1
was slightly worse than JSPAT2 in precision oriented
score. It is easy to assume that the reduction of terms
in a query causes the recall to decrease and the preci-
sion to increase.

Table 7. Precision Oriented Score
precision oriented score

JSPAT1 11.67
JSPAT2 10.86

others 16.20

The system for Passage Retrieval Subtask has the
two characteristics different from the system for Doc-
ument Retrieval Subtask. The first feature is just a dif-
ference in the size of the corpus. However the second
feature produces a structural difference because one
passage is defined as one document to use the system
for Document Retrieval Subtask.

Proceedings of NTCIR-5 Workshop Meeting, December 6-9, 2005, Tokyo, Japan



4 Discussion

We proposed the distributed search system and in-
dexing method using merging the partial indices. Also
we evaluated the distributed and indexing methods,
and showed that these methods have high-speed in
Document Retrieval Subtask. Therefore we can say
that restriction of corpus size is solved in theoretical.

We also proposed to use the selected terms us-
ing SVMs. When this term refinement method was
used, the results was less than improved. However
the search time for JSPAT2 was quad-time of JSPAT1.
Additionally the distributed processing framework and
search system, which were very flexible to adjust to
various experimental environments.

All our purposes are accomplished, but there are un-
satisfactory results. We show the calculating formula
again.

ST = log(TF ) · log(
N

DF
) + SQ (5)

Here in the above formula, there are problem that
log(TF ) = 0 whenTF = 1. Thus we improved the
calculating formula as follows.

ST = log(TF + 1) · log(
N

DF
) + SQ (6)

Table 8 shows the results improved calculating for-
mula. When all experimental conditions are same as
original conditions, new results were better than all
original results.

Table 8. Improved Result of Each Runs
ntcir5b ntcir4b

JSPAT1 0.0532 0.0588
new JSPAT1 0.0739 0.1013

others 0.1286 0.1795

However the calculating formula is written in a
component of search system. Then we can these ad-
ditional experiments without re-indexing the inverted
file.

Finally our future work is the improvement of
search result. We must experiment various calculating
formula and parameters. Although we will optimize
quickly, we can simply change components. In addi-
tion, we should try to refine the query for claims using
any other machine learning methods.

Acknowledgement

We appreciate our colleagues Kayoko Tonoi and
Daisuke Motohashi for their encouragement.

References

[1] R. Baeza-Yates and B. Ribeiro-Neto.Modern Informa-
tion Retrieval, chapter 5-9. Addison-Wesley, 1999.

[2] C.-C. Chang and C.-J. Lin. Libsvm: a library for
support vector machines, 2001. Software available at
http://www.csie.ntu.edu.tw/ cjlin/libsvm.

[3] J.-T. N.Cristianini. An Introduction to Support Vec-
tor Machines and other kernel-based learning methods.
Cambridge University Press, 2000.

[4] D. G. S. Richard O. Duda, Peter E. Hart.Pattern Clas-
sification Second Edition, chapter 5.11. John Wiley &
Sons Inc, 2000.

[5] Y. C. S. Salton G., Wong A. A vector space model for
automatic indexing.Communications of the ACM, 613-
620(18), 1975.

[6] V.N.Vapnik. Statistical Learning Theory. John Wiley &
Sons, 1998.

[7] J. Wu, H. Tanioka, S. Wang, D. Pan, K. Yamamoto, and
Z. Wang. An improved vsm based information retrieval
system and fuzzy query expansion. InFSKD (1), pages
537–546, 2005.

Proceedings of NTCIR-5 Workshop Meeting, December 6-9, 2005, Tokyo, Japan


