CLIR11

NTCIR-6 CLIR Experiments at Osaka Kyoiku University

- Term Expansion Using Online Dictionaries and Weighting Score by Term Variety -

Takashi SATO (Osaka Kyoiku University)

[1] Introduction

- Made two gram-based indices, namely indices for 'HEADLINE' and 'TEXT' tag extracted from test collection for J-J subtask.
- Expanded query term using free online dictionaries in a WEB.
- Probability model were employed for scoring.
- Modified this score multiplying by the number of varieties of query terms.

[2] Indexing, Term Extraction and Expansion

- Two indices (HEADLINE and TEXT index) as inverted files of *n*-grams for each of 1st and 2nd stage corpus of J-J subtask.
- Query terms are extracted from TITLE and DESC tag fields in J-J subtask topics.
- Each compound word are segmented in words, and all combinations of these words are also made.
- After our submission of runs, we tried to expand terms manually using definition part of online dictionary in a WEB (such as Wikipedia and Yahoo dictionaries).

[3] Ranking using TVF (term variety factor)

- We ranked documents using probabilistic model.
- We prepare another run in which each document score is multiplied by term variety factor (TVF) i.e. the number of query term appeared in the document (t_a) divided by the number of query terms for a topic (t_t).
- For example the number of query terms for a topic is $t_t=5$ and the number of query terms appeared in a document for the topic is $t_a=3$ out of 5. Then score of the document for the topic is multiplied by 0.6(=3/5).

[4] Results

- We submitted 5 runs for 1st stage.
- Table shows the combination of query term set (TITLE and DESC) for HEADLINE and TEXT index.
- Last two runs i.e. D-04 and T-05 are scored multiplying by term variety factor (TVF in the table).

Table 1. Submitted runs for 1 st stage (OKSAT, J-J)	run-id	HEADLINE	TEXT	TVF
	D-01	DESC	DESC	no
	TD-02	TITLE	DESC	no
	T-03	TITLE	TITLE	no
	D-04	DESC	DESC	yes
	T-05	TITLE	TITLE	yes

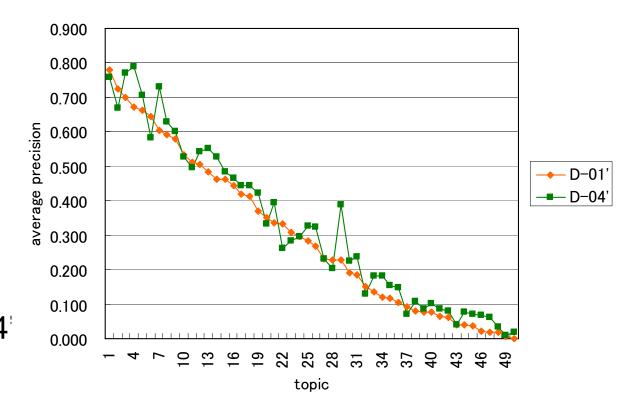

- Figure 1 shows relationship between topic and average precision of relax evaluation of D-01 and D-04.
- In this figure topics are re-ordered by their average precision in descendent order.
- Mean average precision over evaluated topics (MAP) of D-01 run is 0.240, and that of D-04 run is 0.268.
- In most topics, D-04 (TVF runs) are better then D-01 (normal one).

Figure 1. Average precision of submitted run D-01 and D-04

- We made two post-submission runs D-01' and D-04'.
- These are term-arranged version of D-01 and D-04. We expanded terms using definition part of online dictionary.
- On the other hand we reduce the number of terms for topics whose average precision of D-04 (TVF version) is lower than that of D-01 (normal version).
- MAP of D-01' is 0.302, and that of D-04 is 0.327.

Figure 2. Average precision of post-submitted run D-01' and D-04'

[7] Query Term Reduction

- We reduce the number of terms for topics whose average precision of TVF version (D-04) is lower than that of normal probabilistic version (D-01).
- More concretely, we delete top popular terms in corpus for these topics.

Table 2. Reduction of query terms (topic# 24 and 50)

topic#	query terms	run ID	average precision	
24	5	D-01	0.179	
		D-04	0.126	
	2	D-01 '	0.307	
		D-04'	0.282	
50	16	D-01	0.521	
		D-04	<u>0.349</u>	
	6	D- 01'	0.605	
		D-04'	<u>0.732</u>	

[8] Conclusions

- We experimented term expansion using online dictionaries. It was effective for some topics of which average precision was low.
- We also tried to weight score by query term variety factor (TVF). In most cases this worked well.
- Query term reduction should be considered if TVF scoring fails.