Using Unigram and Bigram Language Models NTCIR for Monolingual and Cross-Language IR

Lixin Shi & Jian-Yun Nie RALI, Dept. d'Informatique et de Recherche Opérationnelle Université de Montréal {shilixin, nie}@iro.umontreal.ca

2

3

6

8

5

Motivation

- > No natural word boundaries in Chinese and Japanese: need to determine the index unit first.
 - Using word segmentation
 - Cutting sentence into n-grams

Problems of word segmentation in information retrieval

- > Segmentation Ambiguity:
 - "发展中国家" →
 - 发展中(developing)/国家(country)
- 发展(development)/中(middle)/国家(country) 发展(development)/中国(China)/家(family) > Different words may have the same or related meaning, especially when they share common characters.
- > Both types of indexes have been used in monolingual IR
- \succ Question: How do they compare as translation units in CLIR?

Using different index units

- W (Word): Sentences are segmented into words.
- U (Unigram): Sentences are cut into single characters.
- B (Bigram): Sentences are cut into overlapping bigrams of characters.
- WU (Word and Unigram): Sentences are segmented into both words and single characters.
- BU (Bigram and Unigram): Sentences are cut into both overlapping character bigrams and single characters.

办公室(office) \leftrightarrow 办公楼(office building)

LM approach for monolingual IR and CLIR

KL-divergence between query language model and document language model

$$Score(D,Q) = -KL(\theta_Q || \theta_D) = -\sum_{w \in V} P(w | \theta_Q) \log \frac{P(w | \theta_Q)}{P(w | \theta_D)}$$
$$p(w | \theta_Q) = c(w, \mathbf{q}) / |\mathbf{q}|$$
Maximum Likelihood Estimation

 $P(w \mid \theta_D) = \lambda P_{ML}(w \mid \mathbf{d}) + (1 - \lambda) P_{ML}(w \mid C)$ Smoothing

LM For CLIR:

B+U: Interpolating Bigram(B) and Unigram(U)

 $Score_{R+U}(D,Q) = \lambda Score_R(D,Q) + (1-\lambda)Score_U(D,Q)$

	U		В		W		BU		WU		0.3B+0.7U	
	Rigid	Relax	Rigid	Relax								
C-C-T-N4	.1929	.2370	.1670	.2065	.1679	.2131	.1928	.2363	.1817	.2269	.1979	.2455
C-C-T-N5	.3302	.3589	.2713	.3300	.2676	.3315	.2974	.3554	.3017	.3537	.3300	.3766
J-J-T-N4	.2377	.2899	.2768	.3670	_	_	.2807	.3722		_	.2873	.3664
J-J-T-N5	.2376	.2730	.2471	.3273	—	—	.2705	.3458	_	—	.2900	.3495
K-K-T-N4	.2004	.2147	.3873	.4195	—	—	.4084	.4396	—	—	.3608	.3889
K-K-T-N5	.2603	.2777	.3699	.3996	_	_	.3865	.4178	_	_	.3800	.4001

\succ Interpolating B and U is the best for Chinese and Japanese. But, BU and B are better for Korean

Run-id	RALI v pseudo fe	vithout eedback	RALI pseudo f	with eedback	Average MAP of all NTCIR6 runs		
	Rigid	Relax	Rigid	Relax	Rigid	Relax	
C-C-T	.2139	.3022	.2330	.3303	.2269	.3141	
C-C-D	.1671	.2376	.2031	.2907	.2354	.3294	
J-J-T	.2426	.3171	.2576	.3343	.2707	.3427	
J-J-D	.1877	.2485	.2292	.3052	.2480	.3214	
K-K-T	.3332	.3939	.3460	.4130	.3833	.4644	

N-gram approach is comparable to the average results of NTCIR6

 $P(w \mid \theta_Q) = P(t_i \mid \theta_{Q_s}) = \sum_i P(s_j, t_i \mid \theta_{Q_s})$ $= \sum_{i} P(t_i \mid s_j, \theta_{Q_s}) P(s_j \mid \theta_{Q_s}) \approx \sum_{i} t(t_i \mid s_j) P(s_j \mid \theta_{Q_s})$ 4

Using different translation units

Translate English Words to Chinese Words(W), Unigrams(U), Bigrams(B), or Bigrams&Unigrams(BU).

K-K-D	.2623	.2970	.3287	.3945	.3892	.4678

English to Chinese CLIR result on NTCIR 3/4/5

	U		В		W		BU		0.3B+0.7U	
	Rigid	Relax	Rigid	Relax	Rigid	Relax	Rigid	Relax	Rigid	Relax
E-C-T-N3	.0928	.1106	.0805	.0985	.0898	.1080	.0938	.1102	.1021	.1170
E-C-D-N3	.0900	.1149	.1037	.1333	.1163	.1315	.1116	.1370	.1226	.1439
E-C-T-N4	.0935	.1060	.0872	.1004	.0746	.0897	.1042	.1194	.1018	.1180
E-C-D-N4	.0921	.1021	.0774	.0897	.0727	.0893	.0935	.1076	.1017	.1173
E-C-T-N5	.1533	.1727	.1245	.1512	.1317	.1566	.1632	.1970	.1655	.1916
E-C-D-N5	.1676	.1792	.1158	.1369	.1254	.1492	.1629	.1844	.1776	.1946

- \succ Using bigrams and unigrams as translation units seems a reasonable alternative to words.
- \succ Combinations of bigrams and unigrams usually produce higher effectiveness.

Conclusion

- \triangleright N-grams produce results comparable to the average results of NTCIR6 in Chinese, Japanese and Korean.
- For Chinese
 - N-grams are generally as effective as words for monolingual IR.
 - For Cross-language IR, n-grams approaches can be even better than dictionary-based word translation
- > N-grams can be interesting alternative indexing and translation units to words.
- > Worth further investigations.