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Abstract

This paper describes our work at the sixth NTCIR 
workshop on the subtasks of monolingual 
information retrieval (CLIR). This is the second time 
we have participated in NTCIR. We have used query 
expansion methods in NTCIR-5 with related term 
groups, and this time we use document expansion. 
The traditional information retrieval model has 
limitations on finding related documents since it 
simply checks the existence of query terms in 
documents without considering the context of 
documents. Now we retrieve documents by vector 
space model and cluster the top-n documents to re-
ranking the result set. Experiments show that our 
method achieves an average 3.2% improvement 
comparing with the method we have used in NTCIR-5 
that adopts query expansion. 

Keywords: document expansion,cluster,information 
retrieval.

1 Introduction

A lot of research has been done to improve 

retrieval effectiveness by using additional 

information about query or documents [1]. Two 

traditional methods are query expansion and 

document expansion. We use query expansion to 

improve the performance of Chinese information 

retrieval systems with related term groups in NTCIR-

5 [2]. The new method fulfills document expansion, 

and achieves an average 10.7% improvement 

comparing with the traditional relevance feedback 

technique.

Firstly, we retrieve documents by traditional 

model. Second, we cluster the result set by group-

average agglomerative method. Third, we calculate 

the similarity between document clusters and original 

query, and combine them as final results. 

The paper is organized as following. In section 2, 

we describe the process of document expansion. In 

section 3, we evaluate the performance of our 

method and analyze the result. In section 4, we 

present the conclusion and some future work. 
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Figure 1. System structure 
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2.1  Result Set Cluster

We retrieve documents on the basis of the 

vector space model firstly. Then we get the top-n ����
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docu

. Non- 

hiera

nal real-valued space, and 

defin

ments as a result set to be clustered  [3] (the 

value of n decided by the experiment results). 

Most conventional clustering methods fall into 

two classes: non-hierarchical and hierarchical

final doc clusim sim sim ster    (4) 

Where  is parameter to adjust the rent 

values of the weighting schemes and g ore 

impo

n

[5] 

stem without query expansion. SMART is an 

in

 diffe

ive m
rchical clustering methods were first used 

because of their low computational requirements. 

These methods generally require a fixed number of 

clusters, which restriction makes them inappropriate 

for improving retrieval effectiveness. Recent 

applications of partitioning algorithms for 

information retrieval have also focused on issues of 

efficiency, rather than effectiveness. Hierarchical 

clustering methods have attracted much attention 

because they give the user the maximum amount of 

flexibility. Rather than requiring parameter choices to 

be pre-determined, the results represent all possible 

levels of granularity. So, most of the research on 

cluster analysis in information retrieval has employed 

hierarchical method [4]. We adopt the method of 

group-average agglomerative clustering, a 

compromise between single-link clustering and 

complete-link clustering. 

We represent the objects as length-normalized 

vectors in an m-dimensio

rtance to the similarities of the first or the 

second step. A document having low query-

document similarity can be given high query-cluster 

similarity due to the effects of other documents in the 

cluster. In the reverse case, this is the same [4]. At 

the re-ranking step, we get the view matching the 

query by applying dynamic cluster partitioning to 

document of which similarity is calculated according 

to containment of query terms. And through the 

cluster analysis, the context of all terms in a 

document as well as query terms is considered. is

the third factor we must get in our experiment. 

3 Experiments and Evaluatio

As a baseline, we used the SMART version 11.0 

sy

formation retrieval engine based on the vector 

space model in which term weights are calculated 

based on term frequency, inverse document 

frequency, and document length normalization [6]. 

The weighting method for document collection is as 

follows: 

e the similarity measure as cosine. 
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     For a cluster cj, the average similarity S between 

vectors c  is defined as follows: (The factor | c  |(| c  |-
n

iktf )0.1)(log(                             (5) 

j
ijtf

1

2)]0.1[log(

And the weighting method for the initial query is 

as follows: 

j j j

1)) calculates the number of non-zero similarities 

added up in the double summation.) 

1
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     If s( ) is known for two groups ci and cj, he 

average similarity of their union can be calculated as 

n

kik nNtf )log(*)0.1)(log(           (6) 

j
jij nNtf

1

2)]log(*)0.1[log(

We compare our method with query expansion 

using the relevance feedback technique, in which 30 

do

then t

follows: 
2( ( ) ( )) ( )

(
i j i j

i j

s c s c c c
s c c

cuments among the documents retrieved in the 

initial retrieval are used for feedback. We use the 

Rocchio formula for term reweighing as follows: 
)

( )( 1)i j i jc c c c
   (3) 

     If the similarity between the two clusters is r 

than a certain threshold , we merge the two clusters. 

Re-ranking

We ocument similarity after 

e first retrieval and query-cluster similarity in the 

clust

second analysis step. 
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Where ,  and , are constants, Dr is the f 

a relevant document d , D  is the vector of an 

ir

, . k denotes the number of 

docu

 is the second factor determined by the experiment 

results. 

2.2

vector o

r n

relevant document dn, nrel is the number of relevant 

documents retrieved, and nnonrel is the number of 

irrelevant documents. We set =8, =16, and =4 for 

this experiment. 

First of all, we must confirm three factors by 

experiment: k, 

 calculate query-d

th

er analysis. That is, we focus on each document 

at the first step and on document collections at the 

second step [3]. 

We combine two similarities from the first 

retrieval and the 

ments to be clustered,  is the threshold of the 

document clusters by group-average agglomerative 

method, and  is the balance factor between the two 

similarities. ����
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This is the experimental data k is granted as 

1000,1200,1400,1600,1800, respectively;  is 

gran

is fixed) of experiments are 

liste

se
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( : ) preci

se

ted as 0.5 0.6 0.7 0.8 0.9 respectively; 

is granted as 0.9 1.0 1.1 1.2 1.3 1.4 1.5

1.6 1.7, respectively. 

Three optimal rigid description results of each 

group (the value of k 

d below, with the answer of NTCIR-5 as 

criterion. 
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